

I

.SMART MONITOR
Infant Smart Monitor

Team 6
Fall 2013 – Spring 2014

End of Project Documentation

Infant Smart Monitor (I.Smart Monitor)

Joseph Cacioppo, Duaa Salah, Daniel Schmidt, Mahsa Shadmani, Vasiliy Warkentin

May 5, 2014

Abstract—Monitoring the vital signs of a newborn is a fundamental component of modern

healthcare. Monitoring can, however, bring its own problems that are very stressful for both infant

and parents. These problems arise from the fact that a human is currently needed to do the

monitoring. This individual must be well trained and diligent in order to be effective. Effective data

collection is obviously vital to ensure that nothing important was missed and that the readings are

accurate. Because detecting medically significant events is often a matter of comparing data values to

certain thresholds, an electronic device could easily accomplish this. This paper documents the design

of such a device, the I.Smart Monitor. It details the design process in two stages: First, the

documentation supporting the development of a laboratory prototype that includes the motivation for

the project as a solution to a societal problem. Secondly, the development of a deployable prototype

and a discussion of what was learned during the first stage and how this was applied. The testing

procedures that were performed in order to determine if the device meets established criteria are then

outlined. How these criteria were established and what was learned from the testing is then discussed,

feature by feature.

Keywords—Sensor, Microcontroller, HIPAA, onboard storage, Arduino, C-language, EEPROM, Wi-Fi, Ethernet, I

2
C bus,

Modular sensors, Micro SD card, SPI, Remote Access, World Wide Web, ATmega328, hot-swappable

i

TABLE OF CONTENTS

I. INTRODUCTION…………………………………………………………………………….1

II. SOCIETAL PROBLEM AND SOLUTION…………………………………………...……..1

III. DESIGN IDEA………………………………………………………………………………..2

IV. FEATURE SET…………………………………………………………………………….…3

A. Modular Sensors…………………………………………………………………….…….3

B. Event/Data Logger…………………………………………………………………...……4

C. Alarm…………………………………………………………………………………...…5

D. Home Network Connectivity………………………………………….…………………..5

E. Remote Access………………………………………………………………………….....7

V. CREATION OF LABORATORY PROTOTYPE……………………………………...….…7

A. Creation Details from the Fall 2013 Work……………………………………………..…7

1) Funding………………………………………………………………………….…8

2) Project Milestones…………………………………………………………….….9

3) Work Breakdown Structure………………………………………………..…..10

4) Risk Assessment & Needed Mitigations…………………………………..….14

5) Task Assignment to Complete Each Feature………………………………..15

B. Creation Details from the Spring 2014 Work………………………………………..….16

1) Funding…………………………………………………………………………..16

2) Project Milestones……………………………………………………………...18

3) Work Breakdown Structure…………………………………………………….19

4) Risk Assessment & Needed Mitigations……………………………………...20

5) Task Assignment to Complete Each Feature……………………………..…21

6) Market Review……………………………………………………………….….22

VI. USER MANUAL…………………………………………………………………………....24

VII. HARDWARE………………………………………………………………………………..27

A. Block Diagram & Documentation at Block Level……………………………………….27

B. Schematic & Documentation to Component Level……...………………………………27

VIII. SOFTWARE…………………………………………………………………………………28

A. Block Diagram & Documentation at Block Level……………………………………….28

B. Flowchart, Pseudo-Code, & Documentation to Subroutine Level………………………29

IX. MECHANICAL: DRAWING AND DOCUMENTATION…………………………………31

X. TEST PLAN AND ITS RESULT……………………………………………………………32

A. Hardware Test Plan & Results…………………………………………………………...32

1) Electrical Properties……………………………………………………………32

2) Electromagnetic Properties……………………………………………………32

3) Microcontroller Testing………………………………………………………..32

4) Temperature……………………………………………………………………..33

5) Alarm……………………………………………………………………………..33

6) Case & Chassis………………………………………………………………….33

7) Reliability………………………………………………………………………...33

8) Wireless…………………………………………………………………………..34

B. Software Test Plans & Results………………………………………………………….34

1) Event/Data Logger……………………………………………………………...34

2) Wire/Wireless Connection……………………………………………………..35

3) Remote Access…………………………………………………………………..37

ii

XI. INTEGRATION PLANS BASED ON TEST RESULTS…………………………………...38

XII. CONCLUSION………………………………………………………………………………39

REFERENCES

GLOSSARY

APPENDIX A–RESUMES

APPENDIX B–HUB MAIN CODE

iii

LIST OF FIGURES

Figure II.1—Overcrowded Maternity Ward in China……………………………………………………..2

Figure II.2—Overcrowded Maternity Ward in Los Angeles, CA…………………………………………2

Figure IV.1—I
2
C bus Block Diagram Showing SDA and SCL Connections……………………………..3

Figure IV.2—MicroSD card………………………………………………………………………………4

Figure IV.3—1 MB EEPROM…………………………………………………………………………….4

Figure V.1—Project Timeline Fall………………………………………………………………………..9

Figure V.2a—Work Breakdown Structure with Hours…………………………………………………..13

Figure V.2b—Work Breakdown Structure with Hours Continued………………………………………14

Figure VI.1—Project Timeline Spring…………………………………………………………………..18

Figure VII.1—Different parts of the I.Smart Monitor…………………………………………………...25

Figure VII.2—Login Page for Arduino Yun…………………………………………………………….25

Figure VII.3—Example IP Configuration of the Arduino Yun………………………………………….26

Figure VII.4—Home Network Parameters………………………………………………………………26

Figure VII.5—Arduino Yun Configuration Loading Screen…………………………………………….26

Figure VIII.1—Hardware Block Diagram of I.Smart Monitor…………………………………………..27

Figure VIII.2—Sensor Controller Circuit………………………………………………………………..27

Figure VIII.3—Alarm Circuit Schematic………………………………………………………………..28

Figure IX.1—Flowchart of the Main Device Process…………………………………………………...28

Figure IX.2—Flowchart for Main Hub Code……………………………………………………………29

Figure IX.3—Flowchart of the Initialization Code………………………………………………………29

Figure IX.4—Flowchart of Sensor Data Collection – Hub Side………………………………………...29

Figure IX.5—Flowchart of Sensor Data Collection – One Sensor………………………………………30

Figure IX.6—Flowchart for Sensor Data Writing……………………………………………………….30

Figure IX.7—Flowchart of SD Card Data Writing………………………………………………………30

Figure IX.8—Flowchart of Sensor Data Serial Writing…………………………………………………30

Figure IX.9—Flowchart for Writing Sensor Data to EEPROM…………………………………………31

Figure X.1—Proprietary Housing Chosen for Main Hub………………………………………………..31

Figure X.2—Housing Chosen for Sensor Controllers…………………………………………………...31

Figure X.3—RS-232 Serial Connectors for Sensor Controllers…………………………………………31

Figure X.4—Pin out for Sensor Controller Serial Connections…………………………………………31

Figure XI.1—Floor Plan…………………………………………………………………………………37

iv

LIST OF TABLES

Table IV.1—SD Capacity Situations………………………………………………………………………4

Table IV.2—EEPROM Capacity Situations……………………………………………………………….5

Table IV.3—Examples of Industry Standards…………………………………………………………….5

Table IV.4—Wireless Standards & Frequencies…………………………………………………………..6

Table V.1—Funding Proposal Fall 2013………………………………………………………………….8

Table V.2—Risk Assessment Chart with Mitigation – Fall……………………………………………..15

Table VI.1—Funding Proposal Spring 2014…………………………………………………………….16

Table VI.2—Funding Proposal for Final Prototype……………………………………………………..17

Table VI.3—Risk Assessment Chart with Mitigation – Spring…………………………………………21

Table XI.1—Electrical Properties of Hardware…………………………………………………………32

Table XI.2—Test Results of Connection to the Network………………………………………………..35

Table XI.3—Test Results of Configuring the Connection to the Network Easily……………………….36

Table XI.4—Test Results of Data Transferred Rate……………………………………………………..37

1

I. INTRODUCTION

The birth of a child is often a long

awaited life-changing event filled with

anticipation and wonderment; however, not

every birth proceeds as planned. The

premature birth of a child leaves the parents

filled with overwhelming anxiety that does

not dissipate once the infant is released from

the hospital. Compared to term infants,

premature infants are more likely to suffer

from jaundice, respiratory issues and Sudden

Infant Death Syndrome (SIDS). Because of

this, parents and caregivers of premature

infants are often in a constant state of alert

that is difficult to maintain. The ability to

easily monitor the infant and facilitate

communication between parents and doctors

can go a long way in easing the parents’

understandable anxiety.

From September 2013 to May 2014,

Team 6 developed a device to reduce the

stress during this time as much as possible.

This is the story of the I.Smart Monitor.

II. SOCIETAL PROBLEM AND

SOLUTION

Parents of newborns are concerned with

the health of their children, especially

parents of premature babies. In a study

conducted by the Division of Reproductive

Health, approximately one out of every eight

babies born in the U.S. is preterm.
[1]

According to mayoclinic.org; being born too

early can cause short-term and long-term

health problems. Some examples of short-

term complications are respiratory, heart,

and temperature control problems. Long-

term complications can include chronic

health issues such as infections, asthma and

feeding problems that, in some cases,

require constant monitoring. In addition,

these infants are at a greater risk of SIDS;

approximately 4,000 infants die each year of

SIDS in the United States.
[2]

 In some cases,

early intervention may have prevented some

of these deaths. Some current methods used

to detect these conditions involve

monitoring the breathing, blood pressure and

heart rate of an infant constantly.

Unfortunately, this monitoring does not end

when the baby is discharged from the

hospital; premature infants need to be

monitored even after coming home.

Taking care of premature infants is

extremely difficult and challenging for the

parents. Because of this, many families

relish the return to the privacy and comfort

of their own home. This is especially

beneficial to the infants, as well. Infants in a

warm, intimate environment, where they are

spoken to and held by their parents,

emotionally and physically thrive better than

infants who spend the beginning of their life

in a sterile environment, such as time alone

in an infant incubator.
[3]

By providing a way to monitor their

baby’s vital signs at home, parents can bring

their baby home sooner to begin feeling like

a ‘real’ family. Offering a home-use device

that monitors vital signs increases the

potential for parents to initiate early

intervention by monitoring the infant’s vital

signs and activating an alarm when any vital

sign falls outside of a range predetermined

by medical industry standards.

A remote monitoring function can also

alleviate strain on the health care system.

When parents can view their infant’s vital

statistics in an easy and understandable

format, excessive office visits will be

reduced. Primary care physicians estimate

that at least 10 percent of office visits are

unnecessary and cutting these unnecessary

visits in half would save overburdened

doctors almost one half hour per day.
[4]

 If

the parents continue to be concerned, they

can contact their pediatrician through the

2

website’s messaging service. The

pediatrician can view near real-time and

historical vital sign data and recommend an

office visit or assuage the parents’ concerns

about the health of their infant.

Figure II.1—Overcrowded Maternity

Ward in China

The I.Smart Monitor will provide this

service and transmit vital data to the

pediatrician remotely. With over 10 percent

of babies in the U.S. born prematurely, our

monitor will provide peace of mind and has

the potential to save lives, through both the

alarm and the event recorder features.
 [5]

 The

alarm feature will handle more immediate

concerns, while the event recorder will help

aid in diagnosis. The I.Smart Monitor team

strongly believes this will help alleviate the

stress and impact of this societal problem.

To implement this solution, a device with

multiple features corresponding to specific

aspects of the mentioned societal issue, was

designed.

Figure II.2—Overcrowded Maternity

Ward in Los Angeles, CA

III. DESIGN IDEA

The I.Smart Monitor is comprised of a

specialized central hub, which collects,

stores, time stamps and transmits data

wirelessly to the internet through a local

area network. The monitor also consists of a

variety of non-invasive sensors that are

specifically designed to be safe and

comfortable for the infant. Each sensor is a

stand-alone unit that measures a particular

vital sign and begins working when

connected to the central hub. Each sensor

includes a microcontroller, which allows the

Smart Sensors to perform computations and

processing. This means the hub itself is very

simple; its processing requirements are

constant, regardless of the number of

sensors connected. The sensor controller

allows for a “plug and play” type feature,

which means ease of use for the parents.

Also, the hub is able to send alarms to users

through an audible indicator. Since the

device uses the industry standard I
2
C bus to

communicate between the sensor controller

and the hub, future sensor development and

improvements will be easily compatible

with the monitor. The modular design of the

Smart Sensors allows the customer to

purchase only the sensor type needed;

however, should their needs change, they

can simply purchase an additional sensor.

There is no need for them to purchase a

completely new system. This will result in

cost savings to the customer. The modular

design also allows the device to be adaptable

to new monitoring capabilities and future

sensor improvements, also saving the

parents the cost of having to purchase the

latest and greatest system while still

providing them with the best new

technology.

Moreover, the I.Smart monitor is

providing the pediatrician with remote

3

access to near real-time and historical data.

Ideally, this information can be viewed via

the internet on our secure website for

authorized users and can be displayed in two

different formats: an easy to understand

format for parents and a comprehensive

format for their pediatricians and conforms

to all HIPAA laws. Current devices only

consist of a single type of sensor, which

cannot be changed, and an audible alarm.

Therefore, the novelty of our device is

twofold. Our design allows a single device

to be used in all situations with merely a

different sensor module connected. The

device will also allow for remote

monitoring.

The initially stated design idea involved

multiple sensors of different levels of

sophistication. This has been discovered to

be a misallocation of time. The innovation

of the I.Smart Monitor lies in the method of

delivering the sensor data to the parents and

doctors, not in any particular one of the

sensors itself. For this reason, the design

idea has been modified to focus on this

system, with only one type of sensor

constructed multiple times in order to show

the system works. The particulars of the

feature set have not changed and are

discussed in the following section.

IV. FEATURE SET

Making biometric measurements is

inherently complex. Because of this, the

following five features were developed to

allow non-technical individuals to use the

I.Smart Monitor:

A. Modular Sensors

The device is designed to be able to

accommodate multiple sensors connected

simultaneously. No configuration is

required, to keep training to a minimum.

Sensors can be connected or disconnected at

any time or in any order, and the device will

adjust accordingly without loss of

functionality. This greatly improves the ease

of use.

For this feature, the I
2
C protocol is used.

This protocol involves a master-slave

dynamic in which the central hub (the

master) requests and collects data packets

from the sensors (the slaves). I
2
C uses three

wires, two lines for communication (SDA,

SCL), plus a ground connection, as can be

seen in figure IV.1

Figure IV.1—I
2
C Bus Block Diagram

Showing SDA and SCL Connections

The I.Smart Monitor will use the three

standard I
2
C wires as well as an additional

wire to supply 5 VDC. This feature is

implemented as follows: the hub constantly

polls the bus for all possible address

numbers, which are selected at random by

each sensor when first connected. If the

address number that the hub is currently

polling is taken by a sensor, the sensor will

return a confirmation. If a sensor selects an

address that has already been selected by

another sensor, no conflict will occur as the

data will still be distinguished by its serial

number. The hub will then request a data

packet from the sensor. The data packets

consist of five bytes: a one-byte ID which

indicates sensor type, a unique two-byte

serial number (15-bits for the number, with

4

the MSB as an alarm bit) which

distinguishes one sensor from another of the

same type, and two bytes of biometric data.

The data is pre-processed by the slaves

before transmission and so all packets are

the same size, regardless of sensor type.

The hub will then store this data to a storage

device.

B. Event/Data Logger

The I.Smart Monitor will record data

from each packet it receives. This is

essential for any medical monitoring device

and especially for one used in the home,

away from medical experts. In addition, any

device used to monitor a newborn should

have the ability to record events of medical

significance, if it is going to aid in diagnosis.

For example, a baby’s heart rate dropping

below 120 beats per minute is not

necessarily life threatening on its own, but a

pattern could indicate a more chronic

condition. An event recorder would give a

clear indication of this and potentially assist

in early diagnosis.

Upon receiving a data packet from the

sensors, the device will write this data to a

micro Secure Digital (SD) card.

Figure IV.2—MicroSD Card

The data stored on the SD card are: time-

stamped data, sensor bus ID, sensor ID,

sensor serial number, and sensor data. The

SD card will act as both a recorder by itself,

but also as a spool while data is uploaded to

the internet—the rate of data coming in may

sometimes exceed the rate at which it is

uploaded. The SD card, with a capacity of

16 GB, is capable of storing sensor data for

approximately five months in a worst case

scenario for 127 simultaneous sensors.

Because the device is intended for infants in

the age range of only one to two weeks, 5

months is more than enough storage. Any

class of SD card will work; the I.Smart

Monitor uses class 10 and can store data at

the rate of 10 MB per second. When it

reaches 80% capacity, it will sound an

alarm. When it is at 95%, it will stop

recording continuously and only store

alarming events of medical significance.

When at 100% capacity, it will begin

overwriting the oldest data. Table-IV.1

below illustrates SD capacity situations.

Table IV.1—SD Capacity Situations

SD Capacity

Situations

Results

Reaches 80%

capacity

Alarm will sound

Reaches 95%

capacity

Record alarming data

such as; time-stamped,
sensor ID, sensor data,

alarm bit.

Reaches 100% Overwrite oldest non-

alarming data on the
SD card

The SD card is backed up by a 1 MB

EEPROM which will not be removable but

will prevent data loss if the SD card fails for

any reason.

Figure IV.3—1 MB EEPROM

If the SD card fails or is removed, the

device will begin writing to the EEPROM.

Each data will be stored on the EEPROM.

5

In a worst case scenario situation, this can

continue for 15 minutes with 127 connected

sensors before the EEPROM reaches

capacity; at which time data will be lost. If

the SD card is replaced before this occurs,

the data on the EEPROM will be

immediately uploaded to the SD card.

Because the data is time stamped, it will be

placed in chronological order before being

uploaded to the server.

 If the SD card is not replaced, and the

EEPROM gets to 90% capacity, an LED will

blink. When the EEPROM is 100% full and

the SD card is not connected, an alarm will

sound and it will stop recording. Table-IV.2

below illustrates the EEPROM capacity

situations.

Table IV.2—EEPROM Capacity

Situations

SD Capacity

Situations

Results

Reaches 90%

capacity

LED will blink

Reaches 100%

capacity

Alarm will sound and

it will stop recording

After the data are recorded to the SD

card, it will be transferred to the server.

Before this occurs, however, the packet is

checked for an indication of an alarm

condition.

C. Alarm

The primary sub-feature of the alarm is

the ability to indicate a medical emergency

or other condition of interest in a way that is

easily noticeable. This is, of course,

dependent on the ability to detect said

medical condition. The criteria for what is

and is not a “medical emergency,” or a

“condition of interest,” for a particular class

of measurements (temperature, blood-

oxygen saturation, etc.), has been

established by the medical industry and a

few examples can be seen in Table IV.3.

Table IV.3—Examples of Industry

Standards

Measurement Normal range for

newborn

Axillary temperature 97.5 – 99.3
o
 F

Pulse rate 70 – 190 bpm

Respiratory rate 30 – 60 breaths-

per-minute

As stated previously, the data packet sent

from the sensors will have an alarm bit

contained within the serial number. This bit

will simply be set by an alarm condition and

reset otherwise. The sensor determines

whether such a condition has been met and

relays this to the hub. Each type of sensor

utilizes different criteria, set by medical

standards. For example, an axillary skin

temperature of less than 97
o
F or more than

100
o
F will trigger an alarm. Upon

receiving a set alarm bit, the hub will

activate an audible alarm and record the

event as alarming data. As this device is

designed for use in the home, it must be able

to work with the home network of the user.

The details of this ability are discussed in

the next section

D. Home Network Connectivity

The Home Network Connectivity feature

of I.Smart Monitor supports the ability of

the device to connect to the local area

network. This feature provides both wired

and wireless connections to an existing

home network. In the final prototype, the

I.Smart Monitor is using an Arduino YUN

6

microcontroller which has built-in Wi-Fi and

Ethernet support. The Wi-Fi and Ethernet

features are able to provide IEEE

802.11b/g/n and IEEE 802.3 10/100Mbit/s,

respectively.
[6]

The design needs to follow the standard

frequency defined and approved by the U.S.

Food and Drug Administration (FDA), for

the Radio Frequency Wireless Technology in

Medical Devices.
[7]

 According to fda.org,

IEEE802.11 is one of the appropriate RF

wireless technologies and is also supported

by the Arduino YUN microcontroller.

Table IV.4—Wireless Standards &

Frequencies

Standard Frequency
Data

Rate
Range

Inductive

Coupling

< 1 MHz 1-30

kbps

< 1 m

Wireless

Medical

Telemetry

System

608-614
MHz,

1395-1400

MHz,

1427-
1429.5

MHz

250
kbps

30.60
m

Medical

Device Radio

Communicatio

n Service

(MICS)

401-406

MHz

250

kbps

2-10

m

Medical

Micropower

Networks

(MMNs)

413-419,
426-432,

438-444,

451-457
MHz

 < 1 m

Medical Body

Area

Networks

(MBANs)

2360-2400

MHz

10

kbps -

1
Mbps

< 1 m

802.11a Wi-Fi 5 GHz 54

Mbps

120 m

802.11b Wi-Fi 2.4 GHz 11

Mbps

140 m

802.11g Wi-Fi 2.4 GHz 54

Mbps

140 m

802.11n Wi-Fi 2.4 – 5

GHz

48

Mbps

250 m

802.11.1

Bluetooth

Class I

2.4 GHz 3
Mbps

100 m

802.11.1

Bluetooth

Class I

2.4 GHz 3

Mbps

10 m

802.11.4

(Zigbee)

868, 915

MHz, 2.4

GHz

40

kbps,

250
kbps

75 m

World

Interoperabilit

y for

Microwave

Access

(WIMAX)

2.5 GHz 70

Mbps

(fixed
) 40

Mbps

(Mobi

le)

Severa

l km

Also, based on the below table provided

by mddionline.com, the standard frequency

for 802.11b/g/n Wi-Fi technology is

2.4GHz, which is supported by the Arduino

YUN as well.

Shown in Table IV.4 are common

wireless standards and RF frequencies for

wireless medical product designs targeted

for U.S. medical devices.
[8]

In addition to Wi-Fi, Ethernet is also

supported. This allows the system to

provide wired communication between the

I.Smart Monitor and the local area network.

Above all, one of the most important

criteria in the wireless communication is the

security issue. The Health Insurance

Portability and Accountability Act of 1996

(HIPAA) requires the U.S Health and

Human Services to develop regulations

protecting the privacy of certain health

information.
[9]

 To fulfill this requirement,

the device needs to have WPA or WPA2

encryption support. The Arduino Yun is able

to support both WPA, and WPA2. WPA, Wi-

Fi Protected Access, and WPA2, Wi-Fi

7

Protected Access II, are security protocols

developed by the Wi-Fi Alliance, an

association that promotes Wi-Fi technology

and standardizes Wi-Fi to make one device

compatible with others.

To make the data available remotely,

remote access is required. Hence, our next

feature.

E. Remote Access

The sensor data, once uploaded to the

fileserver, will be stored securely. The file

names correspond to the sensor’s serial

number and are uploaded to the server using

a secure SFTP protocol. A webserver

interface reads the files from the fileserver

and gives users with proper credentials,

access to the data. These users would most

likely be the parent or caregiver, and a

doctor or member of the hospital staff. The

latter will see a more detailed, technical

presentation of the data, while the former

will see a more intuitive, plain English

display. The data will be accessible from a

mobile device and formatted accordingly to

make the data easy to read for users.

The five features discussed above were

implemented in two stages. The first was

the development of a laboratory prototype

which served as a proof of concept and a

platform to determine how the project could

move toward the development of a

deployable prototype, which is the second

stage. The following two sections discuss

these two processes.

V. CREATION DETAILS FALL 2013

Initially, this project was focused on a

sensor; specifically, a sensor that would give

an early indication of infant jaundice. This

would have been a device that took a

measurement of transcutaneous bilirubin

levels, processed this data, and then

displayed it in an easy to understand fashion.

This idea was scrapped, as the team realized

that it would be unsuitable for the intended

scope of the project. This device would

have been utterly dependent on the ability to

make a proper transcutaneous bilirubin

measurement. This involves complex

physics concepts and fine calibration of

LED emission wavelengths which were

judged to be insurmountable problems, at

least within the time allotted. After

discussion with advisors, the project

definition was modified and generalized to

focus on the interface with the sensors rather

than the sensors themselves. This has

proven to be a very advantageous decision

as the new project has been much more

suited to the team members’ skill sets.

In addition to the design of the I.Smart

monitor, Team 6 was involved in the Idea-

to-Product competition—a state-wide event

for bio-medical engineering student projects.

The competition itself consisted of a

presentation of an idea and the marketing

strategies involved in deploying the product.

Upon entering, our team acquired two

business students to assist in the presentation

and the development of our marketing

strategy. The competition took place in

January 2014, in Santa Clara, California.

Throughout the semester, Team 6 met with

their College of Business student contacts,

Terry Petlowany and Ravi Singh and

received their assistance on research,

especially where business skills were

beneficial.

8

A. Funding

Table V.1—Funding Proposal Fall 2013

Item Quantity Unit Cost Total Cost

Wi-Fi Shield for Arduino 1 $88.81 $88.81

Miscellaneous IC’s $23.70 $23.70

4066 chips 1 $2.40 $2.40

microSD Card 1 $19.99 $19.99

1 MB EEPROM 1 $6.73 $6.73

Hardware – Chassis, Serial connectors, IC sockets $48.20 $48.20

RTC module 1 $15.00 $15.00

Arduino UNO + LCD + Ethernet 1 $86.68 $86.68

Arduino YUN 1 $85.00 $85.00

Pulse Sensor 2 $24.95 $47.44

LTE-302 IR Sensor 10 $0.33 $3.31

LTE-302 IR Emitter 10 $0.33 $3.31

Op-amps LM356 10 $0.35 $3.52

FTDI breakout board for ATmega328 2 $14.95 $29.90

16 MHz crystal oscillators 5 $0.95 $4.75

ATmega328 5 $5.50 $27.50

Office Supplies (Binder, paper, etc.) $25.00

Total $538.70

9

B. Project Milestones

Figure V.1—Project Milestones Fall

10

C. Work Breakdown Structure

This section represents the work

breakdown structure of the project over the

fall semester. It explains how each feature

was implemented, the time needed to

complete each feature, as well as the scope

of work, the budget, and the team member

responsible for each part.

As said above, our project consists of five

features: Modular Sensors, Event/data

Recorder, Home Network Connectivity,

Alarm, and Remote Access, as shown in

figure V.2 below:

Modular Sensors: the I.Smart Monitor

incorporates a modular sensor design. There

were two tasks to implement modular

sensors. The first task (2.1) dealt with

multiple simultaneous sensors. To allow this,

the sensors are smart, and each has its own

identity. There were two types of sensors;

basic sensor (2.1.1), intermediate sensor

(2.1.2). Each sensor monitors and reads its

own data. The second task (2.2) dealt with

the microcontroller used to detect these

sensors. The microcontroller was able to

distinguish between these sensors and was

be able to collect (2.2.1), interpret (2.2.2)

and send data (2.2.3). The cost was

approximately $194 and took around 194

hours to complete it. Daniel and Joseph

were responsible to do the first task (2.1),

Vasiliy was responsible with (2.2.1) task,

Duaa did (2.2.2), and Mahsa did (2.2.3).

Alarm: the device has an alarm that will

alert both parents and doctors if a medical

emergency is detected. The tasks for the

alarm feature were: receiving data (5.1),

detecting threshold points (5.1.1) for each

sensor, and then sending an alert signal

(5.1.1.1). The cost of an audio alarm circuit

is around $5, and this feature took around 10

hours to implement. Daniel worked on task

(5.1) and Vasiliy worked on (5.1.1).

Event/Data Logger: There were two

main tasks for the Event/Data Logger. The

first task (4.1) was communication with the

server, which included the ability to write to

the server (4.1.1). There were two methods

used for writing to the server: wirelessly

(4.1.1.2) and wired (4.1.1.1). The second

task (4.2) was dealing with onboard storage.

The device can handle two types of storage:

removable storage (4.2.1.), and embedded

storage (4.2.2). Each one of the storage

types is connected to the microcontroller in

order to accomplish two activities: read data

from and write data to the storage. The cost

was around $112 for SD card, EEPROM and

Arduino, and took around 35 hours to

complete. Vasiliy worked on the server

(4.1), while Duaa worked on (4.2)

Home Network Connectivity: this

feature was implemented by breaking it into

two tasks as shown in figure V.2a. The first

task was to configure the microcontroller to

be able to connect to a home network (1.1)

and either communicates wirelessly (1.1.1.1)

to send (1.1.1.1.1) and receive data

(1.1.1.1.2), or wired (1.1.2) in case the

caregiver has no wireless capability. This

task (1.1.2) required dealing with two

subtasks. The first subtask (1.1.2.1) was

communication with the server which was

implemented using the Arduino

microcontroller to send (1.1.2.1.1) and

receive data (1.1.2.1.2). The second

subtask (1.1.2.2), was security. In this

subtask (1.1.2.2), the data can be encrypted

in order to follow the HIPAA (Health

Insurance Portability and Accountability

Act) standard and provide security for

patient information. The last task is the

power supply (1.2). The device is powered

by an internal power supply (1.2.1) pulling

power from a wall outlet (1.2.2) with a

battery backup which prevents loss of data

(1.2.3) The cost of this feature is around

$176. This feature took around 19 hours to

11

complete. Mahsa worked on the first task

(1.1) of this feature, and Daniel worked on

the second task (1.2).

Remote Access: doctors and parents can

access the data by website (3.1.1) which will

appear in a web browser on either a mobile

device or a PC (3.1.2). To allow for

communication with the website and the

web browser (3.1.2), the device will do the

following tasks: read data (3.1.2.1) and write

data (3.1.2.2). There were two activities for

the reading task (3.1.2.1), both reading data

that could be sent by interface (3.1.2.1.1) or

data that could be sent from the device

(3.1.2.1.2). For the writing task (3.1.2.2), the

I.Smart Monitor can print collected data to a

website page (3.1.2.2.1) that allows both

doctors and parents to access the real-time

readings. This feature took around 90 hours.

Mahsa designed the website (3.1.1) and

Vasiliy worked on the web connection

(3.2.1)

In addition to these features’ tasks, there

are administrative tasks that have to be done.

In general, all group members will

participate in doing these tasks.

Project Management includes the

following management tasks:

Design idea (6.1) which includes the

design idea report (8.1) and presentation

(7.1). All team members worked to

implement this task.

Breadboard Proof (6.2): To implement

this task, all team members participated.

The CpE students worked on programming

the microcontroller and the EEE students

created the sensor circuit. All prepared the

Breadboard Proof Presentation (7.3), and the

task manager was Vasiliy.

Work Breakdown Structure (6.3):

involved organizing the breakdown of all of

the needed tasks that had to be done,

creating the WBS diagram and writing a

report to describe every task. Mahsa did the

WBS diagrams, and Vasiliy and Duaa

collaborated to write the WBS report.

Project Timeline (6.4): The team used

Microsoft Project to create the project

timeline for the whole project, and this was

implemented by Duaa. Also, a separate

timeline was created every two weeks.

Create Laboratory Prototype (6.5): All

group members worked on getting the

laboratory Prototype done, and the task

manager was Daniel.

Working Laboratory Prototype (6.6): this

was the result of our work of the entire fall

semester. It consists of a Presentation (7.5)

and documentation (8.3). The task manager

was Joseph.

Team leaders (6.13-6.17): Team 6 has

five members and each one led the group for

a period of time, as determined in the project

timeline. The leader has a big responsibility.

He/she assigns tasks, make sure the assigned

tasks are done, reviews documentation and

lead the group meetings. Our first team

leader was Joseph form the beginning of the

fall semester until end of October. The next

leader was Mahsa from the beginning of

November until December.

Team Leader Report (6.18-6.22): Each

leader wrote a report discussing his/her

period leading the group, evaluating each

team member, discussing difficulties and

problems that need to be addressed, and

giving advice and recommendations to the

next team leader.

Team weekly reports (6.23): There was a

weekly report every week that describes the

last week’s tasks and the next week’s

expected tasks. Each member documented

his/her tasks with hours and current status.

The leader discussed the overall team work

and the status of the project.

Team member Evaluations (6.24-6.26):

Each member wrote an evaluation on each

other member based on their performance in

the group.

Promote Speaking Proficiency: This task

included all the group presentations during

12

the year. Each task needed 4 hours to be

implemented.

Problem Statement Presentation (7.1):

This was a presentation in which the team

presents the Problem Statement and Elevator

Pitch. All members prepared and

participated in this presentation.

Feature List Presentation (7.2): The team

presented the features of the project. Each

member participated and briefly discussed a

feature.

Breadboard Proof Presentation (7.3):

This was a demonstration of the viability of

the project. The team demonstrated the

major elements of the I.Smart Monitor

design.

Mid-Term Technical Review

Presentation (7.4): The purpose was to

demonstrate the integrated components of

our design idea with real hardware and

software.

Laboratory Prototype Presentation (7.5):

The team presented the I.Smart Monitor

project and team member tasks throughout

the semester to the audience, and discussed

what tasks have to be done in the spring

semester to complete this project.

Promote Writing Proficiency: Each

report needed approximately 6 hours to be

done.

Problem Statement Report (8.1): The

team wrote a report to define the societal

problem that our design will address.

Work Breakdown Structure Report (8.2):

In this report, all the tasks that have to be

done were broken down into subtasks and a

WBS diagram was created and a report

written to describe every task. Mahsa did the

WBS diagrams, while Vasiliy and Duaa

wrote the report.

Design Idea Contract Report (8.3): This

report stated our design idea and explained

the feature set of our design.

End of Term Documentation (8.4): This

was the last report of the fall semester; it

consisted of the documentation of the

working laboratory prototype.

The total cost for our design project in the

fall semester was around $538.70, and the

total time was 988 hours.

13

Figure V.2a—Work Breakdown Structure with Hours

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6

Home Network Connectivity - 240hr

1 Configure Microcontroller

to Home Network - 140hr

1.1 Wireless Connection - 30 hr

1.1.1 Communication - 30 hr 1.1.1.1.1

1.1.1.1 Send Data 15 hr

Receive Data - 15hr

Wired Communication - 110hr 1.1.1.1.2

1.1.2 Communication - 30 hr

1.1.2.1 1.1.2.1.1

Send Data -15 hr

Receive Data - 15hr

Security - 80hr 1.1.2.1.2

Power Supply-100hr 1.1.2.2

1.2 1.2.1

Internal Power Supply - 80hr

1.2.2

Wall Power - 10hr

1.2.3

Battery Backup - 10hr

Hot-Swappable - 460hr 2.1

2 Sensors - 370hr 2.1.1

Basic - 50hr 2.1.1.1

2.1.2 Monitor / Read Data - 40h

Intermediate - 120hr 2.1.2.1

2.1.3 Monitor / Read Data - 80h

Complex 200hr 2.1.3.1

Monitor / Read Data - 120h

2.2

Microcontroller

to Detect Sensor - 90hr 2.2.1

Collect Data - 30hr

2.2.2

Interpret Data - 30hr

2.2.3

Send Data - 30hr

Remote Access - 200hr

3 Web Connection - 200hr

3.1 3.1.1

Design Website - 100 hr

Web Communication - 100hr 3.1.2.1

3.1.2 Read Data - 40hr 3.1.2.1.1

Data send by Interface - 20hr

Data Send from Device - 20hr

Write Data - 40hr 3.1.2.1.2

3.1.2.2 Display Collected Data - 40hr

3.1.2.2.1

Event / Data Logger - 180hr

4 Communication with Server - 50hr

4.1 Write to Server - 50hr 4.1.1.1

4.1.1 Wired - 20hr 4.1.1.1.1

Microcontroller Communication - 20hr

Wireless - 20hr 4.1.1.2.1

Onboard Storage - 130hr 4.1.1.2 Microcontroller Communication - 20hr

4.2 Removable Storage Medium - 70hr

4.2.1 Microcontroller - 70hr 4.2.1.1.1

4.2.1.1 Read from Storage - 25hr

Write to Storage - 35hr

Embedded Storage - 60hr 4.2.1.1.2

4.2.2 Microcontroller - 60hr 4.2.2.1.1

4.2.2.1 Read from Storage - 30hr

Write to Storage - 30hr

4.2.2.1.2

Alarm - 50hr

5 Receive Data - 15hr

5.1 Detect Threshold Point - 30hr

5.1.1

Send Signal to Speaker - 5hr

5.1.1.1

14

Figure V.2b—Work Breakdown Structure with Hours Continued

D. Risk Assessment and Needed Mitigations

The largest risk for our project is

equipment failure with no backup.

Equipment could be damaged by accident

(e.g. dropping the device or connecting it

incorrectly, etc.) or by failure of another

device causing overcurrent, etc. This risk

can, however, be nearly eliminated by

simply having backups of every part. Of

course, this greatly increases the cost, and if

that cost cannot be met then the risk cannot

be mitigated. This risk, in addition to

others, is tabulated below in Table V.2:

Project Management

6 Deisgn Idea 6.1

Bread Board Proof 6.2

Work Breakdown Structure 6.3

Project Timeline 6.4

Create Laboratory Prototype 6.5

Working Laboratory Prototype 6.6

Revise Timeline 6.7

Device Testing 6.8

Market Review 6.9

 Modify Prototype 6.10

Mid-Term Technical Review 6.11

Deployable Prototype Review 6.12

Team Leader 1 6.13

Team Leader 2 6.14

Team Leader 3 6.15

Team Leader 4 6.16

Team leader 5 6.17

Team Leader 1 Report 6.18

Team Leader 2 Report 6.19

Team Leader 3Report 6.20

Team Leader 4 Report 6.21

Team Leader 5 Report 6.22

Team Weekly Reports 6.23

Team Member Eval 1 6.24

Team Member Eval 2 6.25

Team Member Eval 3 6.26

Team Member Eval 4 6.27

Deployable Prototype Complete 6.28

 Promote Speaking Proficiency

7 Problem Statement Presentation 7.1

Feature List Presentation 7.2

Bread Board Presentation 7.3

Mid-Term Technical Review Presentation 7.4

Laboratory Prototype Presentation 7.5

Revised Problem Statement Presentation 7.6

Market Review Presentation 7.7

Mid-Term Progress Review Presentation 7.8

Feature Presertation 7.9

Deploy Prototype Review 7.10

Final Documentation Report Presentation 7.11

Deploy Prototype Presentation 7.12

Promote Writing Proficiency

8 Problem Statement Report 8.1

Work Breakdown Structure 8.2

Design Idea Contract 8.3

End of Term Documentation 8.4

Revised Problem Statement 8.5

Device Test Plan Report 8.6

Market Review 8.7

Mid-Term Review - Testing Results 8.8

Feature Report 8.9

End of Project Documentation 8.10

15

Table V.2—Risk Assessment Chart with Mitigation - Fall

Risk
Estimated

Likelihood

Estimated

Severity
Level of Project Impact Mitigation

Sensor component

failure - no backup
10.00% 6

Severe, must then choose new sensor

or buy new component. Time

consuming and potentially expensive.

Microcontroller/system

failure - no backup
5.00% 9

Severe, must order new

microcontroller. Definitely expensive

and time consuming.

Team decides to change

part after time already

invested in old part

20% 6

Could seriously halt progress. The

benefit of the new part is assumed to

be worth the risk and so mitigation is

not an issue.

Team member needs to

take a personal hiatus
50.00% 3

Not severe. The rest of the team will

have to fill in with extra hours.

Code debugging issues 50.00% 6

Potentially severe, depending on the

particular code and the time to

complete. Very likely to happen to

some code.

E. Task Assignment to Complete Each Feature

This section will detail the tasks that each

individual member completed, the general group

tasks, total hours worked per team member and

total hours spent to implement each feature over

the fall semester.

1) Fall General Group Tasks for All

Members

 Create Problem Statement Report

 Present our Problem Statement

 Create Design Idea Contract Report

 Create a Work Breakdown Structure

 Create a Project Timeline

 Create the end-of-term documentation

 Feature List Presentation

 Breadboard Presentation

 Mid-term technical Review Presentation

 Laboratory Prototype Presentation

 Weekly reports

 Team Evaluations reports

2) Individual Team Member Fall Tasks to

Complete Assigned Feature

 Mahsa Shadmani: was assigned to work

on the Home Network Connectivity

feature and coding for microcontroller to

detect connected sensors and interpret

data.

 Daniel Schmidt: was assigned to work

on the modular sensor feature’s circuit

16

design, construction, coding, and

troubleshooting for both sensors.

 Joseph Cacioppo: was assigned to work

on the modular sensor feature’s circuit

design, construction, coding, and

troubleshooting for both sensors.

 Duaa Salah: was assigned to work on the

Event/Data Logger feature and coding of

the microcontroller to detect connected

sensors to send and display data.

 Vasiliy Warkentin: was assigned to work

on the remote access feature, which

included communication with the web

server and coding for microcontroller to

detect connected sensors and collect

data.

3) Total Hours Spent by Feature

For the fall semester, 18.5 hours was spent

to implement the home network connectivity

feature; 97 hours was spent to implement

modular sensor feature, 34.5 hours was spent to

implement the event/data logger feature; 10

hours was spent to implement the alarm feature;

and 90 hours was spent to implement the remote

access feature.

4) Total Hours Spent by Team member

For the fall semester, Mahsa spent 178

hours, Duaa spent 174.5 hours, Daniel spent 246

hours, Joseph spent 216 hours, and Vasiliy spent

173 hours.

VI. CREATION DETAILS SPRING 2014

The spring semester included a continuation

of the fall semester’s tasks. Few things changed

drastically during the two semesters and this is

all outlined below. The most notable change

was the reduction in types of sensors from two

to one, as mentioned in the design idea section.

A. Funding

In this semester, we switched from using an

Arduino UNO to an Arduino YUN. So in our

final prototype, we didn’t use the Wi-Fi and

Ethernet shields or the Arduino UNO. Instead

we used an Arduino YUN. We had difficulties

trying to set up the wireless connection with the

first Arduino YUN that we purchased at the end

of the fall semester so we bought another one.

Also, we purchased an additional micro-SD

card.

Table VI.1—Funding Proposal Spring 2014

Item Quantity Unit

Cost

Total

Cost

Arduino YUN 1 $85.00 $85.00

microSD Card 1 $19.99 $19.99

Total $104.99

In general we have used the below items in

our final prototype which were purchased

during both the fall and spring semesters.

17

Table VI.2—Funding Proposal for Final Prototype

Item Quantity Unit Cost Total Cost

Wi-Fi Shield for Arduino 1 $88.81 $88.81

Miscellaneous IC’s $23.70 $23.70

4066 chips 1 $2.40 $2.40

MicroSD Card 1 $19.99 $19.99

1 MB EEPROM 1 $6.73 $6.73

Hardware – Chassis, Serial connectors, IC

sockets

 $48.20 $48.20

RTC module 1 $15.00 $15.00

Arduino UNO + LCD + Ethernet 1 $86.68 $86.68

Arduino YUN 1 $85.00 $85.00

Pulse Sensor 2 $24.95 $47.44

LTE-302 IR Sensor 10 $0.33 $3.31

LTE-302 IR Emitter 10 $0.33 $3.31

Op-amps LM356 10 $0.35 $3.52

FTDI breakout board for ATmega328 2 $14.95 $29.90

16 MHz crystal oscillators 5 $0.95 $4.75

ATmega328 5 $5.50 $27.50

Total $358.81

18

B. Project Milestones

Figure VI.1—Project Milestones Spring

19

C. Work Breakdown Structure

This section represents the work breakdown

structure of the project over the spring semester.

It explains how each feature was implemented,

the time needed to complete each feature, as

well as the scope of work, the budget, and the

team member responsible for each part.

Over the spring semester, we continued to

work in implementing the features that were not

completed by the end of the fall semester.

Alarm feature: to be able to complete this

task, Daniel continued working on task (5.1)

and Vasiliy was responsible to complete (5.1.1).

This feature took around 22 hours to complete.

Event/Data Logger: to be able to complete

this feature, there were two main tasks, as

described in section V.2, Vasiliy continued to

work on the first task (4.1) and Duaa continued

to work on task (4.2) To implement this feature,

it took around 51 hours to complete.

Home Network Connectivity: Daniel and

Mahsa continued working to implement this

feature over the spring semester. Mahsa

continued working on the first task (1.1), and

Daniel worked on the second task (1.2). It took

around 12 hours.

Remote Access: to complete this feature,

Mahsa designed the website (3.1.1) and Vasiliy

worked on the web connection (3.2.1). It took

around 32 hours to complete.

In addition to these features’ tasks, there are

administrative tasks that were done and all

group members participated.

Project Management includes the following

tasks:

Revise Timeline (6.7): This consisted of

comparing the completed work over the fall

semester and the remaining work, and revising

the start time and finish time for each remaining

task. The one who was responsible for this task

was Duaa.

Device Testing (6.8): This task involved

testing our current device, both hardware and

software, to make sure it functions correctly.

But before that, we wrote a device testing plan

report (8.5). All group members worked on this

task and the manager was Vasiliy.

Market Review (6.9): This task included

reviewing the current devices on the market and

making a market review report (8.6) and

presentation (7.7). The manager for this task

was Mahsa.

Modify Prototype (6.10): This task started

from the beginning of the spring semester and

was a project-level task involving all

modifications based on device testing and the

market review. The leader manager was Daniel.

Mid-term technical review (6.11): it

included working to prepare for a presentation

(7.8)) and writing a report about it (8.7). All

members participated to get the work done and

the leader manager was Duaa.

Deployable Prototype Review (6.12): This

task consisted of the presentation (7.10) and

documentation (8.8) of a completed deployable

prototype. All group members participated in

the presentation and wrote a one page handout

of the feature list that the team presented. The

leader manager for this task was Vasiliy.

Team leaders (6.15-6.17): the third leader

was Daniel from the beginning of December

until the end of March; the fourth leader was

Duaa from the beginning of March until the

beginning of April, and the last leader was

Vasiliy from April until the beginning of May.

Team Leader Report (6.20-6.22): Each

leader wrote a report discussing his/her period

leading the group.

Team weekly reports (6.23): Just as the last

semester, there were weekly reports due every

week that described the last week’s tasks and the

next week’s expected tasks. Each member

documented his/her tasks with hours and status.

The leader discussed the overall team work and

the status of the project.

Team member Evaluations (6.25-6.26): Each

member wrote two team evaluations during this

semester.

Deployable Prototype Complete (6.27): This

was the last task, which was a demonstration of

a working deployable prototype. It included

20

preparing for a presentation, writing a one page

report about the project’s features, and

demonstrating the project to an audience. The

leader of this was Vasiliy.

Promote Speaking Proficiency: This task

includes all the group presentations during the

year. Each task needed 6 hours to be

implemented.

Revised Problem Statement Presentation

(7.6): This was the first presentation of the

spring semester. It was intended to give a short

overview of the revised problem

statement/design idea, and the project timeline,

based off the experiences from the fall semester.

Market Preview Presentation (7.7): the team

gave a short overview of the market review to

the entire senior design group.

Mid-Term Progress Review Presentation

(7.8): to discuss and demonstrate the project

after device testing and alteration.

Feature Presentation (7.9): Each member

presented and discussed the feature that was

assigned to them.

Deployable Prototype Review (7.10): We

demonstrated the completed deployable

prototype and presented the important features

of the project.

Final Documentation Report Presentation

(7.11): In this presentation, the team discussed

and presented the I.Smart Monitor project

documentation to the instructor.

Deployable Prototype Presentation (7.12):

This was the last presentation, which was a

demonstration of a working deployable

prototype. It included preparing for the

presentation, writing a one page handout about

the project’s features to give to all the visitors,

and demonstrate the project to said audience.

Promote Writing Proficiency: Each report

needed approximately 6 hours to complete.

Revised Problem Statement (8.5): We wrote

a report about our review of the problem

statement and design idea contract.

Device Test Plan Report (8.6): This reported

our test plan of our device.

Market Review Report (8.7): We reported

our market review after talking to experts and

business managers.

Mid-Term Review-Testing Results (8.8): We

documented the device testing results and how

the test results impacted the project.

Feature Report (8.9): Each member wrote a

report about their assigned feature.

End of Project Documentation (8.10): We

documented all aspects of the project by

providing all the required documentations.

The total time spent to complete

implementing the feature set was 750 hours.

Figures V.2a and V.2b both show the WBS

from the fall semester and it still applied the

same in the spring semester.

D. Risk Assessment and Needed Mitigations

The spring semester consisted of far fewer

actual design elements than the fall semester.

Because of this, most risks revolved around

building and deadlines were less threatening.

For example, all prototype components were

soldered to perforated circuit boards. As the

process of mapping a circuit from a protoboard

to a perf-board is fraught with opportunities for

error, it represents a risk. In addition, all team

members are currently in their last semesters of

college and so senioritis was a constant

companion.

21

Table VI.3—Risk Assessment Chart with Mitigation - Spring

Risk Estimated

Likelihood

Estimated

Severity

Level of Project Impact

and Mitigation

Component failure -

no backup

10.00% 6 Severe, must then choose new sensor

or buy new component. Time

consuming and potentially expensive.

System failure - no

backup

5.00% 9 Severe, must order new

microcontroller. Definitely expensive

and time consuming.

Error discovered in

soldered circuit

30% 6 Could seriously halt progress. The

soldering must be done carefully and

mindfully.

Team member needs

to take a personal

hiatus

50.00% 3 Not severe. The rest of the team will

have to fill in with extra hours.

Code debugging issues 80.00% 7
Potentially severe, depending on the

particular code and the time to

complete. Very likely to happen to

some code.

E. Task Assignment to Complete Each Feature

This section details the tasks that each

individual member completed, the general group

tasks, total hours worked per team member and

total hours spent to implement each feature over

the spring semester.

1) Spring General Group Tasks for All

Members

 Create Revised Problem Statement

Report and Presentation

 Create Device Test Plan

 Create Market Review Report and

Presentation

 Create the End-Of- Project

Documentation

 Mid-Term Progress Review Presentation

 Create Feature Report and Presentation

 Deployable Prototype Review

 Deployable Prototype Presentation

 Weekly reports

 Team Evaluations report.

2) Individual Team Member Spring Tasks

 Mahsa Shadmani: was assigned to

continue working on Home Network

Connectivity feature, design the website,

and test the feature.

 Daniel Schmidt: was assigned to work

on the power supply task, Alarm feature,

22

design Printed circuit board, design the

case and testing

 Joseph Cacioppo: was assigned to

design the case and to test the Modular

Sensor feature.

 Duaa Salah: was assigned to complete

the Onboard Storage feature and testing

of the feature.

 Vasiliy Warkentin: was assigned to

continue working on the Remote Access

feature, code for the alarm and web

communication.

3) Total Hours spent by Feature

For the spring semester, 11.5 hours were

spent to implement the Home Network

Connectivity feature; 97.1 hours were spent to

implement the Modular Sensor feature; 51 hours

were spent to implement the Event/Data Logger

feature; 22 hours were spent to implement the

Alarm feature; and 32 hours were spent to

implement the Remote Access feature.

4) Total Hours Spent by Team member

For the spring semester, Mahsa spent 161.5

hours, Duaa spent 188.5 hours, Daniel spent

164.5 hours, Joseph spent 125.5 hours, and

Vasiliy spent 112 hours.

F. Market Review

Currently, there are several infant health

monitors available to parents and healthcare

providers. However, none of our competitors’

devices offer smart sensors, which analyze and

process the vital sign data for use by parents and

pediatricians. These unique sensors consist of

two components: the non-invasive sensor that

attaches to the infant and a sensor controller that

provides the processing functionality. These

external sensors and sensor controllers can be

developed independently of the I.Smart hub.

This idea is unique to the I.Smart Sensor

design—creating new accessories, without

upgrading the hub. The burden on the hub is

also independent of the amount of sensors

connected to it. The hub itself has no additional

tasks when an additional sensor is connected.

Simply put, it is a Multi-Slave, Single-Master

design that allows the I.Smart Monitor to be

unique. Because of the I.Smart’s modular

design, parents can choose to monitor one or

more different vital signs at a time. This is a

marketable improvement over our competition;

the other devices have specific monitoring

capabilities that cannot incorporate additional

functions as new technologies are developed.

Our unique contribution to the baby

monitoring market is the integration of smart

sensors, which actually process and interpret

data, and the secure website, where the data is

available remotely. The I.Smart Monitor takes

data from the smart sensor controllers and sends

the data, by a specific protocol, to the central

hub where it is routed appropriately. This

system of data acquisition, storage and

transmission is our innovation.

The I.Smart Monitor system is also unique

by providing the pediatrician with remote access

to near real-time and historical data via the

internet. This secure server provides data in two

forms: an easy to understand format for parents

and a comprehensive format for their

pediatricians. In addition, it conforms to all

current laws under the HIPAA.

The I.Smart Monitor team will apply for a

series of patents for smart sensor technology.

The first patent is a utility patent, which

incorporates the way the sensor controllers

communicate with the central hub by

transferring data, including the algorithm. The

second patent is a design patent, which patents

the look of the product design.

1) Cost

23

A fair monetary estimate to fund the

completion of the prototype, including the

safety testing, development of the website and

verification of the remote alarm system,

approximately $150,000, which does not

include any regulatory fees. The development of

the hub and smart sensor controller technology

is complete; the remaining steps use existing

technology, final product design, and software.

2) Initial Market & Total Market Value

The initial customer group for this product is

parents of premature newborns and other high-

risk infants, with an emphasis on educating their

pediatricians on the benefits of the I.Smart

monitor. In the U.S. alone, approximately 4

million babies are born each year, making the

market sustainable.
[6]

The amount of money parents spend in the

first year on products and services for the health

and safety of their infant ranges from $8 to $14

thousand. Parents spend $200 million on infants

in the Sacramento area alone.
[7]

 The I.Smart

device is an attractive option to our

competitors’, most of which monitor only one or

two vital signs. While other companies send

data to a phone app, the I.Smart monitor system

is superior since it allows the data to be viewed

by both parents and pediatricians via website

and the smart sensor technology allows

scalability of the device to user’s current and

future needs. To provide this coverage, the

I.Smart monitor would sell for around $250,

which would include the hub, 2 smart sensors,

and lifetime access to the I.Smart website.

The initial test market is premature babies in

Sacramento County. Sacramento County from

2002 to 2011 had an average of 20,762 births

per year.
[8]

 Premature infants account for

approximately 2554 of those births. If each

parent with a premature infant spends roughly

$150 for an infant monitor (the average price of

our closest competitor), this Sacramento test

market would be worth approximately

$383,100. If the I.Smart Monitor were to

capture 5 percent of our test market, we would

generate an average of $19,155 in sales revenue

per year during the test market phase.

Once the initial test is complete, and the

product seems viable, the intermediate market

for the I.Smart monitor would be to sell it

nationwide to parents of premature infants.

Assuming that 500,000 babies are born

prematurely each year, and each baby needs an

infant monitor, we forecast that the overall

premature infant monitor market is worth $75

million. A 5 percent market share for the

I.Smart Monitor in the national premature infant

market is worth $3.75 million.

The final market for this device will be a

nationwide market to include all babies born in

the United States, approximately 4 million

births
[9]

 and $600 million in baby monitor sales

revenue per year. A 3 percent market share for

the I.Smart Monitor in the national baby

monitor market is worth $18 million in sales

revenue. With the 4 million births per year in

the U.S., the market potential for baby monitors

is easily adequate to support the I.Smart

Monitor business. The cost of the initial

prototype is $117.21 per unit; however, with

economies of scale and labor cost

considerations, the projected cost of

manufacturing per unit is $87.90. The wholesale

price of the I.Smart Monitor will be $180 and

the market price for the monitor will be

$250.00; this will allow for a gross margin of

around 40 percent. At the 3 percent market

share, the estimated gross profit will be just over

$9.18 million.

3) Window of Opportunity

Our product relies on parents and

pediatricians choosing our product over those of

our competitors. We believe that our product is

affordable and offers benefits that are superior

to other baby monitors. Our product is adaptable

24

to changing technology so will have a longer

product life cycle than those of our competitors.

With new monitors soon to reach the market,

such as the Owlet Sock Monitor and the Baby

Fairy Wrist Monitor, the market trend is for

continued technological improvements in baby

monitors. Even with new products entering the

market, the I.Smart Monitor is still more

advanced and comprehensive than the

competition. We want to take advantage of our

innovative product by introducing the I.Smart

Monitor before other companies can develop

similar technology.

4) Barriers to Entry

The United States Food and Drug

Administration (FDA) requires an inspection of

each new medical device and the completion of

a rigorous application process. FDA Section 201

H states that a baby monitor is only a medical

device when it claims to cure or prevent SIDS.

Since we are not claiming to cure or prevent

SIDS, our baby monitor is not a medical device;

therefore, we are not subject to this rigorous

application process.

Some other barriers to entry into this market

are the initial costs of market penetration and

the lack of product recognition. Other

manufacturers have established their brands as

safe, reliable and trustworthy. Our new product

will not initially have those qualities; however,

the superiority of our product will allow us to

compete in this market.

5) Competitive Advantage

The I.Smart Monitor system is the only

infant monitoring system that uses smart sensor

controllers, which analyze and process vital

sign data for use by parents and pediatricians.

By using smart sensor controllers, our product

is adaptable and upgradeable to new

technologies while our competitors’ products

are not. The smart sensor controllers are “plug

and play” and are easy to use for our

customers. Our overall product package

includes the user-friendly website that provides

near real-time and historical data to parents and

pediatricians and facilitates improved

parent/pediatrician communication.

Any product released into a market must be

purposefully designed to fit into that market in

some way. In this paper, it has been shown

what that market is for the I.Smart Monitor. As

discussed above, data was gathered from the

parents of infants to determine the best way to

enter that market and the features of the I.Smart

Monitor were designed with this in mind.

Without taking into consideration how this

product will actually get into the hands of

people whom it would benefit, their hands will

likely remain empty.

Once a customer has acquired this device,

they, or a technician tasked with maintenance,

will need a comprehensive guide to the using it

and a summary of how it works. The following

four sections function as this guide.

VII. USER MANUAL

Attention! This device should not be

operated in extreme temperature. This device is

for indoor use only. For best connection to the

internet, it is recommended that the Hub is

placed within 50ft of your home Wi-Fi router.

The I.Smart Monitor system consists of two

major components. The first one is the Hub, this

is the centralized device that processes all the

data from different sensors, and then stores the

data. The second is the Sensor Controller; this is

the device that the sensors are connected to. The

Sensor Controller communicates the data from

the sensors on the baby to the Hub. The Hub

communicates to the Sensor Controllers via the

communication port, COM for short. The

Sensor Controllers can be daisy chained

together in any order, and only one Sensor

Controller has to be connected to the Hub for

25

the Hub to see all the Sensor Controllers in the

chain.

Figure VII.1—Different Parts of the I.Smart

Monitor

A. Initial Setup

1) Place the Hub on an even, hard surface

next to your baby’s crib and make sure

that it is within three (3) feet of a power

outlet.

2) Insert a microSD card with at least 4GB

of space into the microSD slot on the

Hub.

3) Place the desired sensor controller next

to the Hub and attach the male end COM

port of the Hub to the Female end COM

port on the sensor controller.

4) If you have more than one sensor, attach

the sensor’s COM port to the previously

attached sensor.

5) Refer to the sensor’s user manual on

how to attach the sensor to the baby.

6) After all the sensors are connected to the

baby, insure that none of the cables will

cause entanglement.

7) Attach the Hub to the power outlet with

the provided micro-USB cable and USB

adapter.

8) The Hub will then start collecting data

from the sensors controllers.

B. Connecting to the Home Network

The I.Smart Monitor has the ability to act as

an Access Point, but it can also connect to an

existing network. These instructions walk you

through connecting your I.Smart Monitor to a

wireless network. The I.Smart Monitor can

connect to unencrypted networks, as well as

networks that support WEP, WPA, and WPA2

encryption.

1) When you first power on the I.Smart

Monitor, it will create a Wi-Fi network

called Arduino Yun-XXXXXXXXXXXX.

Connect your computer to this network.

2) Once you've obtained an IP address,

open a web browser, and enter

http://arduino.local or 192.168.240.1 in

the address bar. After a few moments, a

web page will appear asking for a

password. Enter "Arduino" and click the

Log In button.

Figure VII.2—Login page for Arduino Yun

3) You will find a page with some

diagnostic information about the current

network connections. The first is your

Wi-Fi interface; the second is your

Ethernet connection. Press the

Configuration button to proceed.

Hub

COM Port
Sensor Controller

26

Figure VII.3—Example IP Configuration of

the Arduino Yun

4) On the new page, you will configure

your I.Smart Monitor, giving it a unique

name and identifying what network you

want to connect to.

5) In the I.Smart Monitor NAME field, give

your Arduino a unique name and record

it somewhere secure. You'll use this to

refer to it in the future.

6) Choose a password of 8 or more

characters for your Arduino. If you leave

this field blank, the system retains the

default password of Arduino

7) If you wish, you can set the time zone

and country. It is recommended to set

these options as it may help connecting

to local Wi-Fi networks. Setting the

local time zone also selects the country's

regulatory domain.

8) Enter the name of the Wi-Fi network

you wish to connect to.

9) Select the security type, and enter the

password.

Figure VII.4—Home Network Parameters

10) When you press the Configure & Restart

button, the Arduino will reset itself and

join the specified network. The Arduino

network will shut down after a few

moments.

Figure VII.5—Arduino Yun Configuration

Loading Screen

11) You can now join the network you

assigned to the I.Smart Monitor.

27

C. Viewing the data:

1) Disconnect the Hub from power

2) Remove the microSD card from the Hub

3) Use a microSD reader to attach the

microSD card to your computer

4) Open the microSD card in a file browser

5) Find the serial number of the sensor you

want to view and open that file.

VIII. HARDWARE

A. Block Diagram & Documentation at Block

Level

Figure VIII.1—Hardware Block Diagram of I.Smart Monitor

B. Schematic & Documentation to Component

Level

In figure VIII.2, the sensor controller circuit

can be seen. The 10 uF capacitor allows the

ATmega328 chip to start up properly when

power is first applied.

Since the device as a whole consists

primarily of microcontroller platforms and

integrated circuits, there is only one feature that

was implemented using discrete components,

the alarm.

Figure VIII.2—Sensor Controller Circuit

28

Figure VIII.3—Alarm Circuit Schematic

IX. SOFTWARE

A. Block Diagram & Documentation at Block

Level

The main device had a simple task of

detecting, retrieving information, and processing

the information from the sensors that are

connected to it. Then, it determines where to

write the processed data.

Initialize:
Bridge
Serial

FileSystem
Wire

Get Current Time

Retrieve information from
attached devices

Retrieve alarm and data from
information retrieved

Write processed data to
appropriate locations

start

Figure IX.1—Flowchart of the Main Device Process.

29

B. Flowchart, Pseudo-Code, & Documentation

to Subroutine Level

In this section the flowcharts show the

basic processes of how the Hub device works.

For the complete code for the Hub device, see

Appendix B.

Start

Initialize()

GetTimeStamp()

readFromAll()

Device powered on

Call the function to
initialize all the
major protocols

Get the current
Time

Retrieve data from
sensors and write to
appropriate location

Figure IX.2—Flowchart for Main Hub Code

Initialize()

Bridge.begin()

Serial.begin()

FileSystem.begin()

Wire.begin()

End

Start the Bridge
interface to be able

to use Wi-Fi

Start Serial
communication

Start FileSystem to
be able to write to

SD card

Start I2C protocol to
be able to

communicate with
Sensor controllers

Figure IX.3—Flowchart of the Initialization Code

bus < maximum devices

readFromAll()

Int bus = 1

readFromOne()

Device exists on
current bus

bus++

NO

YES

YES

End

NO

Initialize to start
reading from bus one

Determine if current bus number is
the maximum buss number

Determine if there is a
device on the current bus

number

Read device on current bus

Increment the bus number

Figure IX.4—Flowchart of Sensor Data Collection –

Hub Side

30

readFromOne()

Read Data from sensor

Extract alarm bit and
serial from data

Compute data based
upon sensor ID

wireData()

End

Call the function that
determines where to

write the computed data

Figure IX.5—Flowchart of Sensor Data Collection –

One Sensor

writeData()

writeToSD()

writeToSerial()

End

Write data to SD card

Write data to Serial
terminal

writeToFTP()
Write to Remote

Server

Figure IX.6—Flowchart for Sensor Data Writing

writeToSD()

Generate file name
based on ID and Serial

The file can be opened

Return 1

Print error opening file
and writeToEEPROM()

NO Write data

YES

IF Alarm bit is enabled

Write ALARM!!!

Return 0

NO

YES

Can the file be created or
if it exists can it be

accessed

Figure IX.7—Flowchart of SD Card Data Writing

writeToSerial()

Print data to Serial

IF Alarm bit is enabled

Print ALARM!!!

End

NO

YES

Figure IX.8—Flowchart of Sensor Data Serial Writing

31

writeToEEPROM()

Print to Serial �Writing
to EEPROM

Write data to EEPROM

End

Figure IX.9—Flowchart for Writing Sensor Data to

EEPROM

X. MECHANICAL: DRAWING AND

DOCUMENTATION

For the prototype chassis, a proprietary

electronic housing was selected. A

perforated circuit board was likewise

chosen. The device was placed into this

housing at the end of the first semester and

soldering began at the beginning of the

second. Both can be seen below in figure

X.1.

Figure X.1: Proprietary Housing Chosen for

Main Hub

Figure X.2: Housing Chosen for Sensor

Controllers

To allow the sensors to be easily

connected to the main hub and each other,

some RS-232 serial connectors and housings

were purchased and wires soldered to the

chosen terminals, as can be seen below in

figure X.3.

Figure X.3: RS-232 Serial Connectors for

Sensor Controllers

The chosen pinout is pictured below in

figure X.4.

Figure X.4—Pin-out for Sensor

Controller Serial Connections

32

XI. TEST PLAN AND RESULTS

The elements of this test plan fall under two

categories, safety and functionality. Safety

testing is obviously important for the health of

the user, but is also something that investors

would be concerned with as a means of reducing

future liabilities. Functionality testing is

important for the reputation of the designer and

the company producing the device, and in the

case of a medical device, can be closely linked

to safety testing. Below, a plan is detailed for

testing the I.Smart Monitor in both fashions.

The plan begins at the level of individual

microcontrollers and extends to the device as a

whole. First the hardware test plan is discussed,

followed by software.

A. Hardware

1) Electrical Properties

The electrical isolation of the main hub and

sensor controllers was tested by measuring the

resistance to circuit ground at several key nodes.

These included the connection point between

the sensors and sensor controller, the connection

point between the sensor controllers and I
2
C

bus, and any other points where the resistance

was expected to be high, such as on the ‘north’

(positive supply) side of any active devices.

The resistance to ground at each of these points

was over a meg-ohm.

In addition to electrical isolation, the voltage

and current demands of the device must be

determined for proper documentation to be

possible. The changes in these values as more

sensors are added or taken away are also

important. This measurement was

accomplished by connecting an ammeter in

series with the main supply, and tabulating the

current values over time as different numbers of

sensors are attached. This could then be

graphed or presented in some visual way for the

data sheet.

Table XI.1—Electrical Properties of

Hardware

Component Current Power

Alarm 5 mA

inactive, 25

mA active

40 mW

inactive, 200

mW active

Sensor 70 mA 420 mW

Main hub 100 mA 600 mW

The specifications of an I
2
C bus contain

several measureable quantities, such as

maximum bus capacitance. This could be

measured and recorded with a digital

capacitance meter as several sensors are

connected and disconnected. These data would

then be compared and any relationship graphed.

2) Electromagnetic Properties

Testing the EM properties of the device

would be done using an inductive antenna and

an oscilloscope. A spectrum analyzer would be

more effective however there is not one at the

disposal of the group. As the device is running

enclosed within its case, the probe, perhaps with

a small coil attached to the end, could be moved

around the outside and the oscilloscope checked

for any signals. Conversely, a function

generator could be used to attempt to send

signals into the device while checking to see if

they are being received anywhere

inappropriately.

3) Microcontroller Testing

The testing of the sensor controllers involves

both testing the correct transmission and

reception of data from the sensors, but also

testing the electrical properties of the circuit to

ensure that it is properly isolated from the power

source. The method of testing the former is to

transmit some known constant value and check

33

if that value was received. The sensors

themselves were tested in this way to determine

if they required calibration. To test the

controllers themselves, test code was written

into another microcontroller that output a

constant or functional binary value. This

microcontroller was then connected to the

sensor controller as if it were a sensor. The

received value was then output to a serial

monitor and compared to the expected value. In

nearly all tests the values matched precisely

over the entire range of temperatures that the

sensor would be exposed to in this application.

The exception was an intermittent problem that

occurred only once.

4) Temperature

As the main hub and the sensor controllers

are enclosed within a small package, it is

important that none of the parts generate

significant heat. If heat is generated regularly,

than steps must be taken to dissipate that heat,

which will inevitably increase the size of the

affected part. Temperature can be easily

measured using an infrared thermometer, such

as those in many DMMs, or kitchen-supply

stores. The device was left running for several

hours with its temperature taken periodically at

several key locations and the results recorded.

Key locations included all power-control

circuitry and any point where one conductor

becomes two, etc. No part showed significant

change in temperature with two sensors

connected simultaneously. This is however to

be expected since the device is already known to

use little power during normal operation.

To verify the reliability of our temperature

sensors, a device such as an Isotech Dry Block

Calibrator would be used. This device is a metal

block with pockets that can be set to a desired

temperature, and into which a temp sensor can

be inserted. Comparing the Isotech setting

versus the output of the I.Smart temp sensor,

will verify the integrity of the I.Smart Monitor.

5) Alarm

The main issue with the audio circuit was

noise, mainly in the form of high-frequency

“hiss.” This was resolved with filter capacitors,

as can be seen in figure VIII.3. Both the signal

and power supply required high-pass filtering

most likely due to the fact that the “power

supply” is a microcontroller.

The second type of testing was focused on

whether the circuit was as effective as it needs

to be in an environment analogous to its place of

operation; namely, a home with possible noise

pollution. The main point here was to

determine if the alarm could be easily noticed in

another room with audio interference. The

location chosen was two rooms with a closed

door between them and plenty of chatter in the

vicinity. From this, it was determined that the

sound must be very loud and changing regularly

so as to sound very different from ambient din.

The measured electrical characteristics of

the alarm circuit can be seen in table XI.1

above.

6) Case & Chassis

The device is mounted onto a frame which is

enclosed within a case. These are both designed

to protect the electronics and as such have to be

reliably sturdy. This could be easily tested

through destructive means with a similarly built

case. Here, however, both case and frame are

proprietary items that have their own pre-

determined specifications which could be

simply acquired from the manufacturer, rather

than wasting money destroying something that

was purchased.

7) Reliability

It is important to ensure that the device is, in

fact, easy to use and that the average user will

have great difficulty in getting it to stop working

correctly. This would be tested by giving the

device to several non-technical individuals and

34

allowing them to play with it and try and use it.

Their successes and failures would be carefully

noted and considered as a possible reason to

alter the design.

8) Wireless

The testing of the wireless system was

accomplished inside several different

environments with Wi-Fi networks. These

include a home and various spots in the

laboratory. The reception power was measured

in different rooms in differing proximity to the

router and the results tabulated. The

measurement can be done using proprietary

software. The floor plan of each location was

mapped and compared to the table of values.

This is discussed further in section B.2 below

B. Software

The software was written in a modular

fashion, with the code for each feature written

separately and then integrated. The software for

the sensors is mainly concerned with processing

the data into a form transmittable on the I
2
C bus.

This code was first tested with hard-coded

values and upon successful reception was tested

with actual real-time sensor data. The software

for the data storage control system and Wi-Fi

connection were tested in a similar manner.

Other components were written separately and

debugged; data logger, alarm, remote

communication, each component was tested

separately. Based on the different test results of

each components code, revisions were made

separately until the component as a whole could

work separately with minimal problems. Then,

the separate working components were put

together into the main code of the hub and

debugged to make sure that the component

worked as desired with other components

without obvious effects on other components.

When all the components were put together,

then all the different parts were retested to make

sure everything as a whole was working

properly.

Afterward, boundary conditions were tested

and based on the tests, revisions were either

made to the code, or new boundary conditions

were observed and new code had to be written

to cover those boundary conditions.

1) Event/Data Logger

To ensure that the Event/Data Logger

feature worked correctly, testing was done to

both the SD card and EEPROM. First,

functionality testing was performed on the SD

card by writing an Arduino test code that could

write and read hard-coded values to and from an

SD card simultaneously. Testing results were as

expected. It saved the hard-coded values to the

SD card, and it read the same values back. After

that, the hard-coded values were replaced with

actual real-time sensor data by connecting the

sensors to the Arduino Yun and running the

main Hub code that has a function for the SD

card interface. Testing results were as expected.

The correct sensor data was saved to the correct

file in the SD card, and the saved data was

retrievable. Both operational results were

matching; the SD card functionality testing was

successful.

Also, speed testing was performed to test the

data transfer rate of the SD card to ensure it is

storing real-time data. This rate was tested by

writing Arduino code that sent hard-coded

values to the card for certain amounts of time

and measured how much it sent. The average

rate of storing data with one sensor connected t

is 0.265 kb/s, and with no sensors connected 5

Kb/s. Comparing these rates with the SD card

capability of 10 MB/s, it is clear that the

required speed can be easily accommodated.

Each data packet coming from its sensor will

take 2 seconds to be saved.

The same functionality testing was

performed on the EEPROM. Its functionality

was tested with an Arduino test code that could

write and read hard-coded values to and from

35

different locations simultaneously on EEPROM

to ensure it can be written to. After the test was

successful, a sensor was connected to the Yun to

test it with actual real-time sensor data. Testing

results matched with the expected results. It

saved correct sensor data to the right location;

testing was successful.

While testing, two things were discovered.

First, the correct time-stamp is only available

when the device is connected to Wi-Fi. The

solution to this problem would be to use a RTC

(Real-Time Clock) module. Second, for a

while, when the SD card was disconnected, it

kept showing on the serial monitor that it was

writing to it, when it should have been writing

to the EEPROM; it was not working correctly.

This was eventually fixed by trying a different

procedure to implement it and retesting it.

2) Wired/Wireless Connection

The first step in testing for the Home

Network Connectivity feature was to make sure

that the central hub was able to connect to the

internet both wirelessly and wired by using both

Wi-Fi and Ethernet. At this stage of the testing,

the I.Smart Monitor was checked for its ability

to connect to both home network system as well

as hot spot internet provided by a smart phone.

The results of the testing are summarized in

table XI.2 below.

Table XI.2—Test Results of Connection to the Network

Test ID Description
Expected

Results
Actual Results Pass/Fail

1
Make connection to the internet

provided at home

Ability to make

connection

Ability to make

connection
Pass

2

Make connection to the mobile

hot spot network provided by cell
phone

Ability to make

connection

Ability to make

connection
Pass

Next, because it is important for the device

to be easy to use for the parents of a newborn, it

must be easy to configure the internet

connection with minimum training or

interaction by an infant’s parents. To test this,

the device was given to different random people

who were asked to try and connect it to the

internet. We gave the device to six people with

different levels of technological knowledge in

connecting devices to the internet. The results

are summarized in table XI.3 below.

36

Table XI.3—Test Results of Configuring the Connection to the Network Easily

Test ID Description Expected Results Actual Results Pass/Fail

3
Make connection to the

Internet easily by person 1
Easily configure the

connection

Not easy to

configure

connection

Fail

4
Make connection to the

Internet easily by person 2
Easily configure the

connection
Easy to configure

connection
Pass

5
Make connection to the

Internet easily by person 3
Easily configure the

connection

Not easy to

configure

connection

Fail

6
Make connection to the

Internet easily by person 4
Easily configure the

connection
Easy to configure

connection
Pass

7
Make connection to the

Internet easily by person 5

Easily configure the

connection

Not easy to

configure

connection

Fail

8
Make connection to the

Internet easily by person 6
Easily configure the

connection

Not easy to

configure

connection

Fail

Based on the above test result, making the

connection to the internet was not easy for a few

people. So it was decided to develop and write

the user manual for configuring the device for

home network connection part in more detail

and adding visual instructions which makes

following them easier.

As stated in section B.1 above, the rate at

which data is saved is 0.265 kbps. Comparing

this measurement to the transferred data rate of

sending data from central hub to the internet it is

clear that the rate of transferring to the internet

is above the rate of saving data into the SD card.

The average of sending data to the internet at

different distances from the router with wired

and wireless connection is about 115 kbps

which shows that we are able to transfer the

saving data from the SD card to the internet

with a speed far higher than the data transfer

rate of the SD card. Below, figure XI.1 is a

floor plan which shows different locations that

were used to test the data transfer rate to the

internet with respect to the router indicated.

The distance of each location from the router is

shown in the below figure and is indicated by d,

and each location is shown by a dot and is

market with A, B, C, or D.

37

Figure XI.1—Floor Plan

The results of this stage of the test are summarized in table XI.4 below.

Table XI.4—Test Results of Data Transferred Rate

Test ID Description Expected Results Actual Results Pass/Fail

9
Measuring data with

wire connection

Transferring data rate to the
internet greater than saving

data rate to the SD card

Transferring data rate is

greater
Pass

10

Measuring data rate

with wireless
connection at A

Transferring data rate to the

internet greater than saving
data rate to the SD card

Transferring data rate is

greater
Pass

11

Measuring data rate

with wireless

connection at A

Transferring data rate to the

internet greater than saving

data rate to the SD card

Transferring data rate is
greater

Pass

12

Measuring data rate
with wireless

connection at A

Transferring data rate to the
internet greater than saving

data rate to the SD card

Transferring data rate is

greater
Pass

13

Measuring data rate

with wireless
connection at A

Transferring data rate to the

internet greater than saving
data rate to the SD card

Transferring data rate is

greater
Pass

3) Remote Access

The server was tested in two ways:

communication from the hub, and to the

website. The communication from the hub was

tested both when there were low connection

speeds and when there was a high ping rate.

The device was connected to a network and the

internet speeds throttled. A data delay was then

introduced to test the time it takes to transfer

data to the server successfully. It was then

decided that the longest time gap in the data that

could still be considered “near real-time” is

about 10 seconds. These two scenarios

determined the highest ping rate to be about

380ms and lowest speed possible for a

38

successful communication and data transmission

to the server of about 128 kbs.

For the website communication, the

website was checked on different operating

systems and web browsers; it was found that the

chrome browser worked best and is

recommended to users for best results. The login

feature of the website was also tested to ensure

that permitted users only can view the required

information. Without using sophisticated (and

unsophisticated) hacking methods, the website

was found to reject unknown passwords and

allow entrance to registered passwords.

XII. INTEGRATION PLANS BASED

ON TEST RESULTS

We will now discuss how each feature fits

together with other features and integration with

the device as a whole. This was very important

to understand during the design process of the

I.Smart Monitor in order to help mitigate and

anticipate potential problems with the system as

it began coming together. What follows is a

discussion of this by feature.

A. Modular

The modular design of the I.Smart Monitor

is really the heart of the system. The platform

consists of multiple parts to accomplish its

modular design. It consists of a central hub, and

multiple sensors/sensor controllers. Medical

sensors are directly wired to the sensor

controllers. The connection between the sensor

controllers and the hub is done through RS232

connectors. Each of the sensor controllers has

an ATMEGA328 microcontroller. While the

hub uses an Arduino Yun, due to its networking

abilities. All of the other features use the

modularity of the I.Smart Monitor to collect

data and complete their tasks.

B. Event/Data Logger

The event/data logger functionality

depends on the modular sensors. The sensor

controller sends a five-byte data packet to the

storage over the I
2
C bus. The sensor data will be

stored on an SD card. In addition, the name of

the files on the SD card will be created based on

the sensor type and the serial number. The serial

number is the first byte and most of the second

byte (15 bits) of the data packet. The MSB of

the second byte contains an alarm bit that is

used to activate the alarm when SD capacity

reaches 80% and when EEPROM capacity

reaches 100%. After data is stored to the SD

card, it will be transferred to the internet. The

remote access feature depends on the event and

data logger feature. From this, we can see the

integration of the event/data logger feature.

C. Alarm

The alarm is closely connected to both the

Modular and Event/Data Logger features.

Sensor-side, the alarm condition is detected by

the sensor controller, which is the main

component of the modular feature. The sensor

controller sends a five-byte data packet to the

main hub over the I
2
C bus. Within these five

bytes, there are two bits that contain both the

serial number of the sensor (15 bits), and the

alarm bit (MSB of higher-order byte). Because

of this, the functionality of the alarm system is

entirely dependent on the sensor controller

working correctly, as well as the I
2
C bus. The

alarm was designed initially as a standalone

system with a monotonic square wave audio

pattern that was merely triggered and not based

on hard-coded numbers. A function was then

developed based on testing, discussed above, to

create a more appropriate sound, and this

function was inserted into the code for the main

hub. Previously, the alarm code was simply

sending a text indicator of an alarm condition to

the Arduino IDE’s Serial Monitor window,

which was used for proof of concept. Instead of

calling an internal function of the Arduino’s

39

Serial class, the code now calls the “alarm”

function developed by the I.Smart Monitor

team.

In addition to a real-time indicator, the alarm

affects the data being recorded as well. This

ability is crucial and is obviously dependent on

the functionality of the Event/Data Recording

system. In fact, this is what is meant by “event

recorder.”

Ideally, the alarm could also give indications

about the overall “health” of the monitor and to

do this, it would need to be able to receive

indications from other features, such as the SD

card used in the Event/data logger.

D. Home Network Connectivity

As stated earlier in the Home Network

Connectivity feature section, the I.Smart

Monitor needs to follow the standards approved

for medical devices. The Arduino YUN

microcontroller fully supports all required

specifications. However, based on our test

results, making a connection to the internet with

the chosen microcontroller was not very simple

for people with a low level of technical

knowledge. So we decided to prepare and write

a more detailed user manual for the device to

make the connection to the internet easier to

understand for our users. Above all, and because

the Home Network Connectivity feature is one

of the most important features of our design, we

needed to design our device with a

microcontroller that could provide data transfer

rates for us. This feature is important because it

is highly engaged with other features, the

event/data logger and remote access. It has to

support the transferring of data from the SD

card to the internet and then to the server. This

required transferred data rate has been fully

verified by our test results as stated above. So

the choice of the Arduino YUN microcontroller

for our device was very beneficial, as it fully

supports all required specifications for the home

network connectivity feature. The only area that

we need to work on is the user manual in order

to make it easier to follow and understand for

parents with low levels of technical knowledge.

E. Remote Access

The remote access feature primarily

integrates with both the home network

connectivity and the event/data logger features.

After testing, we found that the FTP connection

with the server is achievable, but the time it

takes to transfers large files every time a reading

is made, is too long. This also stops the whole

process. To fix this, the files will only be

uploaded after ten readings, and only the ten

new readings will be attached to the files

already on the server; as opposed to uploading

whole files over FTP. Another change that we

integrated after testing was checking for alarms.

A different file for alarms is created so that it

will be easier for doctors to read alarming

events, so it would not be lost in all the other

data.

XIII. CONCLUSION

The design of the I.Smart Monitor has been

a long and involved process. It began as a

simple abstract solution to the societal problem

discussed in the Societal Problem section of this

document. This solution was designed to help

alleviate the difficulties involved with the

premature birth of a child. These include the

stress for the parent and infant, as well as the

lack of efficient communication between parent

and doctor. By creating the ability to monitor a

child from home, the parents and infants will be

much more comfortable and the doctors will be

able to help more patients with ease. Once this

concept was realized, we began to develop the

functional blocks of a system that would

accomplish this, as discussed in the Design Idea

section. These functional blocks were then

specified as a feature set which is discussed at

length in section with the same name.

40

The project went through the stages of

development and the design revisions that were

deemed appropriate based on what was learned

or realized at each stage. For example, the

planned timeline was constantly revised in the

first few months of the project to reflect these

realizations as they came. As time went on, we

became more aware of realistic time frames for

each feature and these revisions became fewer

and further between.

The first phase of the project, the laboratory

prototype, was an enlightening process and it is

now clear to us just how much work goes into

designing an electronic solution to a problem,

particularly one that is intended for use by the

general public. The design itself takes a great

deal of time in order to be rigorous and mindful

of potential risks.

The project consisted of more than just

hardware and software design. It consisted of

funding and even a market review. We not only

had to prove the cost of our project, but we had

to do research and test the market. The idea of

not only having a device, but also knowing what

it is worth is a very valuable tool.

Once the device design was complete, our

team had to work to develop a test plan to

ensure our product both helped with our societal

problem, but also met the goals we set out for

ourselves in the design idea contract. Once that

criterion was met, it is finally safe to say this is

our story for the I.Smart Monitor.

REFERENCES

[1] Center for Disease Control and Prevention (Oct 29, 2013) National Prematurity Awareness Month [Online] Available:

http://www.cdc.gov/features/prematurebirth/

[2] Committee on Fetus and Newborn. American Academy of Pediatrics (April, 2003) Apnea, Sudden Infant Death

Syndrome, and Home Monitoring. [Online] Available: http://pediatrics.aappublications.org/content/111/4/914.full.pdf

[3] American Medical Association. (October 9, 2012) Infant Home Apnea Monitors [Online] Available:

http://www.anthem.com/medicalpolicies/guidelines/gl_pw_a053619.htm

[4] P. S. D. Lomdon, "Potential Reduction in Unnecessary Visits to Doctors from Safe and Appropriate use of OTC

Medicines Could Save Consumer and Taxpayers Billions Annually," Paul A. London and Associates, 2011.

[Online]. Available: http://www.yourhealthathand.org/images/uploads/London_Cost_Study_061711.pdf. [Accessed

12 2013].

[5] USA National Innovation Marketplace (September 9, 2009) Benchmark Infant Cardiac/Apnea Home Monitor
System (Medical) [Online] Available: http://innovationsupplychain.com/innovations/report.php?id=2048

[6] Centers for Disease Control and Prevention (2013). Births and Natality. National Center for Health Statistics.

[Online]. Available: http://www.cdc.gov/nchs/fastats/births.htm

[7] Agency for Healthcare Research and Quality, Center for Financing, Access and Cost Trends (2010). Health

Insurance: Premiums and Increases. National Conference of State Legislatures. [Online]. Available:

www.ncsl.org/research/health/health-insurance-premiums.aspx#Private Sector Premium Tables By State

[8]

[9]

[10]

California Department of Public Health (2013). State of California. Table 2-18: Live Births, California Counties,

2002-2011 [Online]. Available: www.cdph.ca.gov/data/statistics/Documents/VSC-2011-0218.pdf

Martin, J., Hamilton, B., Ventura, S., Osterman, M., Matthews, T.J. (2013). Births: Final Data for 2011. National
Vital Statistics Reports. [Online]. Available: www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_01.pdf

"Arduino YUN," Arduino, [Online]. Available: http://arduino.cc/en/Main/Products. [Accessed 8 Feb 2014].

[11] "Radio Frequency Wireless Technology in Medical Devices - Guidance for Industry and Food and Drug
Administration Staff," Food and Drug Administration 13 Aug 2013. [Online]. Available:

http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm077210.htm. [Accessed

8 Feb 2014].

[12] J. Hartford, "Must-Know Standards and Tests for Wireless Medical Devices," 20 Feb 2012. [Online]. Available:

http://www.mddionline.com/article/must-know-standards-and-tests-wireless-devices. [Accessed 6 Feb 2014].

[13] "Wi-Fi in Healthcare," WiFi Alliace, Feb 2012. [Online]. Available:

http://www.silexamerica.com/uploads/common/whitepaper-wifi-in-healthcare.pdf. [Accessed 8 Feb 2014]

[14] BroadbandDSLReports.com (Oct 7, 2013) Google: 2% of our User Base is Using IPv6 [Online] Available:
www.dslreports.com/shownews/Google-2-of-Our-User-Base-is-Using_IPv6-126109 Date Accessed: 11/26/2013

[15] Stork image taken from:
 http://wecanbeaoriginal.com/blog/2011/08/free-svg-download-stork-and-baby-scal-mtc/

http://pediatrics.aappublications.org/content/111/4/914.full.pdf
http://www.anthem.com/medicalpolicies/guidelines/gl_pw_a053619.htm
http://innovationsupplychain.com/innovations/report.php?id=2048
http://www.cdc.gov/nchs/fastats/births.htm
http://www.cdph.ca.gov/data/statistics/Documents/VSC-2011-0218.pdf
http://www.cdc.gov/nchs/data/nvsr/nvsr62/nvsr62_01.pdf

[16] Image taken from:
 http://blogs.cfr.org/coleman/category/topics/health/page/2/

[17] Image taken from:

 http://onlyhousemusic.org/vbulletin/showthread.php?p=1236420

[18] Image taken from: http://embedded-lab.com/blog/?p=2583

[19] Image taken from:
 http://www.frys.com/product/7824139

[20] Image taken from:
 https://www.sparkfun.com/products/11287

[21] Image taken from:
 https://www.sparkfun.com/products/11021

[22] Image taken from:

 https://www.sparkfun.com/products/10524

[23] Image taken from
 http://arduino.cc/en/Main/ArduinoBoardYun?from=Main.ArduinoYUN

[24] User’s manual taken from http://arduino.cc/en/Guide/ArduinoYun#toc14

GLOSSARY

_________________A_________________

Arduino – a family of single-board

microcontrollers featuring an open-source and

peer-tested set of libraries. The hardware is also

open-source

ATmega328 – An AVR microcontroller

designed and produced by Atmel. This is the

controller use in the Arduino UN and Arduino

YUN platforms.

_________________B_________________

Bilirubin levels – the amount of bilirubin

contained in tissue beneath the skin. An indirect

measure of liver functionality, since the liver

normally removes bilirubin from the blood.

Blood-oxygen saturation – the percentage of

hemoglobin that is carrying oxygen to the total

hemoglobin in the blood. Used as a measure of

oxygen intake from breath rate.

Bradycardia – an abnormally low heart-rate.

For adults it is anything below about 60 beats

per minute (bpm); for infants the threshold is

about 110 bpm.

Byte – Eight bits of binary information. The

basic unit of computer data storage.

_________________C_________________

CAT5 cable - A twisted-pair cable for carrying

signals.

C-language – the programming language used

in the Arduino Integrated Development

Environment (IDE)

CMOS tri-state – A buffer which has three

possible states, High, Low, and High

impedance, or High-Z state. In the latter state,

the device is effectively removed from the

circuit. Used to prevent loading effects by

circuit blocks that are not currently being used.

_________________E_________________

EEPROM – Electrically Erasable

Programmable Read-Only Memory; Here a DIP

IC featuring Flash technology used as a

redundant backup for data.

Email – text messages sent over the internet.

_________________F_________________

o
F – Degrees Fahrenheit; a unit of temperature

measure. Equal to 9/5*
o
C + 32 for degrees

Celsius.

_________________G_________________

GB (Giga Byte) – 1 Billion Bytes =

1,000,000,000 Bytes

_________________H_________________

HIPAA – Health Insurance Portability and

Accountability Act; legal framework used to

standardize online transmission of medical

information. Here used as an external definition

for security standards.

Hot-swappable – Able to be connected and

disconnected without the need to switch power

off.

Hyperbilirubinemia (jaundice) – the

accumulation of subcutaneous bilirubin to toxic

levels.

_________________I_________________

I2C bus – the physical connections used to send

data from slave to master; notated SDA and

SCL for serial data and serial clock,

respectively.

I2C protocol – Inter-Integrated Circuit; A data

transfer protocol using two data wires plus

ground and a master-slave dynamic.

Internet – The Wide Area Network (WAN)

consisting of all interconnected computers in the

world that use the internet protocol suite

TCP/IP.

IPv4 – Internet Protocol version 4; the fourth

version of the internet protocol which routes

most traffic on the internet.

_________________K_________________

kB/s – Kilobits per second; a data transfer rate

_________________L_________________

Local Area Networks (LANs) – Small networks

of computers used in businesses and private

homes. A home network is an example of one

of these.

_________________M_________________

Master-Slave – the names for the roles played

on the I
2
C bus by different devices. The slave

cannot send or receive data unless instructed to

do so by the master.

MB (Mega Byte) – 1 Million Bytes = 1,000,000

Bytes

Microcontroller – an electronic circuit

consisting of a microprocessor, memory and I/O

circuitry. Often used as a single-program

computer for controlling hardware.

Micro SD card – a smaller version of an SD

card.

Modular sensors – Sensors that are

interchangeable and self-contained. They

merely require a hub to take data pre-processed

data in a standard form from them

MSB – Most Significant Bit; the bit with the

highest weighted value, or the farthest bit to the

left when written in standard form.

_________________O________________

Onboard storage – storage on the device itself,

as opposed to that uploaded to the server.

Implemented with flash memory devices.

_________________P________________

Parallax Propeller – a multi-core

microcontroller which was considered as a

possible platform for the I.Smart Monitor.

_________________R________________

Remote Access – The ability to access data

without being physically connected to the

source of the data, such as over the internet.

Respiration – the act of breathing and the

associated circulation of oxygen and carbon

dioxide in the lungs.

_________________S________________

SCL – Serial Clock; One of the wires in an I
2
C

bus; used to synchronize the data

SDA – Serial Data; one of the wires in an I
2
C

bus; sends synchronous data

SD card - a storage device used for removable

storage. Using Flash technology allows this

card to be extremely small yet contain many GB

of storage capability.

SMS - Short Message Service; a text messaging

service used by mobile carriers.

SPI – Serial Peripheral Interface; a synchronous

serial data link de facto standard. SPI uses a

master-slave dynamic and a dedicated slave-

select wire for every slave on the bus as well as

three data lines. It allows for full-duplex

communication.

Sudden Infant Death Syndrome (SIDS) – the

sudden death of an infant that is not predicted

by medical history and remains unexplained.

_________________T________________

TTL 7400 series – Transistor-Transistor Logic;

an architecture of Integrated Circuit logic using

Bipolar Junction Transistors. Very fast

switching capabilities but is being supplanted by

CMOS which has a much lower power

consumption rate.

_________________W________________

Wi-Fi Shield – A circuit board designed to

allow the Arduino to access a Wi-Fi hot spot and

transmit or receive from the internet.

WPA – Wi-Fi Protected Access; a security

protocol developed by the Wi-Fi Alliance to

secure wireless computer networks.

Wireless – the transmission and reception of an

electronic signal without the use of wires—

usually with radio frequency or optical signals.

World Wide Web – The collection of web

pages accessible on the internet through a web

browser.

APPENDIX A-RESUMES

A. Joseph Cacioppo
Joseph S. Cacioppo

Objective

To develop a career as an Electrical Engineer that can make use of my proven abilities in Electrical engineering and management.

Summary of Qualifications

 System Design and Fabrication

 Current DoD Security Clearance
 Experience in malfunction analysis and troubleshooting

 Understanding of flight theory, sub-system tie in, digital logic,
aircraft electrical and hydraulic system

 Ability to function well on a diverse team or as an individual

 Installation and removal of Line Replaceable Units and other
avionics systems

 Excellent time management skills and punctuality

 Willing to travel and work rotating shifts

Education

California State University, Sacramento (Sac State), Sacramento, California
Bachelor of Science, Electronics Engineering, 2013-Graduation 2014, Current Cumulative GPA: 3.83

California State University, Fresno (Fresno State), Fresno, California
Bachelor of Science, Electrical Engineering, 2009-2013 GPA: 3.78

Fresno City College, Fresno, California
Associate of Arts, Liberal Arts with Highest Honors, December 2009, GPA: 3.65

Relevant Skills and Coursework

 Knowledge of various programming languages (C++,

Microprocessor, MATLAB, Wolfram Mathematica)
 AC and DC Circuit Analysis
 Basic Solid-State Theory
 Integrated Avionics Systems Theory
 Microprocessor and Computer Architecture

 Multi-disciplinary engineering experience
 Electronics Analysis

 Knowledge of Digital Logic Design
 Signals and Systems

 Transmission/Receiver System Theory
 RADAR Homing/Warning System

Experience

Alpha Research and Technology El Dorado Hills, California, 2013

Systems Engineer Intern
o Acting project lead on Intelligent Display Panel
o Redesigned entire system interface while working closely with manufacturing, mechanical, and electrical engineers
o Reduced resources needed by 30% to complete project during system redesign
o Sought out, tested and implemented new product for redesign after recognizing system issues

US Air Force Edwards Air Force Base, California 2011

F-16 Link 16 and Tactical Data Link Engineer Intern
o Designed and fabricated multiple hardware interfacing devices for Tactical Data Link terminal and radio communication
o Tested the Integrated Data Modem and Link 16 system functionality in accordance with manufacturer’s specifications and operational

effectiveness
o Performed ground and flight tests using a Military Rugged Tablet, Battlefield Operational Support System, PRC-117 and ARC-210 Radios within

the ground station and the control room

US Air Force Worldwide, 2003-2007

F-16 Avionics Systems Technician
o Maintenance, troubleshooting, upgrading, and programming the various avionics systems on the F-16
o Analyzed wiring diagrams to solve issues associated with system and sub-system tie-in
o Loaded and upgraded the current Operational Flight Program for the F-16 avionics systems
o Followed Technical Orders and safety practices to ensure proper maintenance was performed
o Maintained and recorded flight times, maintenance schedules and aerial refueling data for the entire squadron

Honors/Awards

 National Science and Mathematics Access to Retain Talent Grant 2010-2011

 Dean’s List and President’s List every semester, 2008-2013
 President of SIAM’s Fresno State Chapter, 2012-2013

 Graduated with Highest Honors from Fresno City College, 2009

 Air Force Outstanding Unit Award, 2006

B. Duaa Salah

Duaa Salah

OBJECTIVE:

Seeking an entry level position in Computer Engineering

EDUCATION:
In Progress: Bachelor of Science, Computer Engineering, CSU Sacramento; expected graduation: May 2014

RELATED COURSES:

 Advanced Logic Design Intro to System Programming Operating System Principles

 Network Analysis Programming Concepts and Methodology Operating System Pragmatic
 CMOS and VLSI Design Micro-computer Assembly Language Programming Computer Software Engineering

 Computer Interfacing Data Structures and Algorithm Analysis Intro to Digital Signal Processing
 Advanced Computer Org. Computer Network & Internet Signals & Systems
 Computer Hardware Design Organization Database Management & File Org. Discrete Structures

KNOWLEDGE AND SKILLS

 Computer Languages:
C, Java, Assembly, Verilog, VHDL, Spin, ,MIPS, MySQL, JavaScript, HTML, Python

 Hardware/Software:
Xilinx ISE, FPGAs, ModelSim, MultiSim, Microsoft Office, Open Office, Microsoft Project, Microsoft Visio, Math Type L-Edit,
PSpice, VNC Viewer, VMware Workstation, Arduino Software, Propeller Tool, Graphic Analysis, CircuitMaker, MATLAB

 Tools:
 Oscilloscope, Waveform Generator, Multimeter
 Operating System:
 Windows XP, Windows 7, Unix, Linux

WORK EXPERIENCE:
 Student Assistant California Department of Transportation Current

Working as student assistant in the IT department. Perform routine maintenance tasks related to the database software and prepare technical
assistance requests for the IT manager. Consult with staff to access additional database needs and improvements to database and reporting
requirements. Perform data entry using word processing, spreadsheet or database commands. Create data directories and subdirectories for file and
report generation retrieval purpose and maintain a disk file of entered data.

PROJECT EXPERIENCE:
 Senior Design Project

Worked with a five-member team to develop a device to monitor an infant’s health at home which can be remotely accessed by physicians and/or
caregivers. The monitor is easy to use, monitors multiple vital signs, logs events and data, and activates an alarm when any vital sign is outside of a
predefined range.
Computer Interfacing Project
Worked with a group to design PWM (Pulse Width Modulation) Fan Controller that control motor speed with basic system features in addition to some
integration of advanced system features, such as: temperature dependence and smooth speed ramp.
CMOS & VLSI Project
Worked with another colleague to design and layout the control logic circuit for a 4-bit successive approximation analog-to-digital converter in 0.5 um
CMOS. We designed a block diagram for the circuit, gate level, transistor level and layouts using L-Edit.
Logic Design Project
Designed a unique user generator feature which was Egyptian characters using VHDL language and displayed them by using LCD on Spartan 3E and
VGA.

Asynchronous FIFO Controller
Implemented the design using hierarchical design methodology. There were three modules FIFO read, FIFO write and FIFO memory. Used ISE design
tool to simulate the waveforms. Generated test bench for the Verilog code to verify the working of the desired design.
16-bit MIPS Processor
Worked with another colleague through the design, development, and implementation phases of a 16-bit MIPS processor with a 5-stage pipeline. Used
Behavioral modeling in Verilog to implement load/store word operations, integer arithmetic, and branching. Also, implemented simple branch
prediction, forwarding and hazard detection.

Hardware System Design
Worked with another colleague to design a 32-bit Target PCI Memory Card and a level-2 Cache controller.

ACIVITIES
 Member of Institute of Electrical and Electronics Engineers (IEEE)

Member of IEEE Women in Engineering (WIE)

C. Daniel Schmidt
Daniel Schmidt

Objective: To become as skilled in the design of control systems and robots as I possibly can

Education:

California State University, Sacramento: 2012 to Fall 2014

 Grade Point Average: 3.82

 Degrees in Progress:
o B.S. Electrical Engineering – Controls

Sacramento City College: 2007 to 2012

 Grade Point Average: 3.84

 Degrees Completed:
o A.S. Electronic Facilities Maintenance

Technician , Telecommunications Technician,
Mathematics

Programs and Courses Studied:
o Computer Repair
o Operating Systems Experience (Windows &

Linux)
o Soldering and high-tech assembly
o AC/DC theory and analysis
o Semiconductor theory

o Microprocessors and digital circuits
o Receivers and transmitters
o Mathematics
o General Chemistry
o General Physics

o Network analysis
o Transistor amplifier design

 Bipolar Junction
 MOSFET

o Logic design, HDL - Verilog
o Analog/Digital control system design

o Machine Vision
o Microcontroller programming

 Atmel ATmega328
 Parallax Propeller

o Robotics

Experience:

 Programming Languages:
o C/C++

 Structured and Object-Oriented – including recursive and polymorphic functions
o Python

 Structured and Object-Oriented

o Intel Assembly

 Software:
o Pspice, Multisim, ADS
o MATLAB
o MS Office Suite, Apache Open Office Suite

Projects:

 Senior Design:

o Home infant monitor with hot-swappable, self-identifying sensors and Web-based interface
 Designed hot-swappable ‘smart sensor’ modules which identify themselves as well as check sensor data for threshold

levels indicative of a medical emergency and alert main hub
 Designed interface between sensors and main hub using Inter-integrated Circuit (I2C) Bus
 Constructed all hardware components
 Performed device and sensor hardware testing

 Participated in Idea-to-Product competition for Biomedical design projects

 Robotics:

o Laser-guided PID-controlled mobile robot
 Wrote code for Proportional-Integral-Derivative control of robot’s position
 Tested robot to determine optimal value for PID tuning parameters
 DC motors

o Autonomous mobile robot with Infrared and Ultrasonic obstacle detection
 ATmega328
 Proportional Control of DC motors

o Autonomous mobile robot with Infrared obstacle and edge detection
 Parallax Propeller with C/C++

 Continuous rotation servos
o PID speed controller for DC motor using I2C interface (Sensor to Controller)

D. Mahsa Shadmani
Mahsa Shadmani

OBJECTIVE: ENTRY LEVEL POSITION IN COMPUTER HARDWARE ENGINEERING

EDUCATION: Bachelor of Science Computer Engineering, 3.48 GPA.

CSU Sacramento, Graduation date Spring/2014

RELATED COURSES:

Operating System Principles Signals & Systems Advanced Computer Organization

Network Analysis Advanced Logic Design CMOS and VLSI
Data Structures and Algorithm Computer Hardware System Design Computer Networks and Internet
Software & Engineering Operation Computer Interfacing System Programming in Unix
Embedded Processor System Design (IP)

Operating System Pragmatics Introductory Circuit Analysis

PROJECT EXPERIENCE:

 Senior Project Design, I-Smart Monitor
Member of a group of five-student that design and develop a central hub by using Arduino YUN which able the parents of newborn to monitor the
health of their infant at comfort of their home which can be remotely accessed by physician/caregiver via a secure website.

Home Automation
Member of a four-student team design and develop a Home Automation that are using wireless communication to transmit signals throughout a
home. The propeller will transmit data through an XBee wireless transmitter. The XBee receiver module and send the data to the Arduino which
controls a 120V device, a microprocessor, and an LED light

 VLSI Design by L-edit
Design and Layout of a 3-Bit Serial Adder with Accumulator in 0.5 μm CMOS

 16-bit MIPS Processor
Led a two-person team through the design and development and implementation phase of a 16-bit MIPS, processor with a 4-stage pipeline,

Behavioral modeling in Verilog was used to implement load/Store word operation, integer arithmetic, and branching, Simple branch prediction,
forwarding and hazard detection were also implemented

 PCI Memory Card & Level2 Cache Memory
Led a two-person team through the design and development phase of 32 bit Target PCI Memory Card and also design a Level-2 Cache Memory

KNOWLEDGE AND SKILLS:

Languages: C, MIPS, ASCII, X86 Assembly, Verilog, VHDL, Java, JavaScript, HTML

Software and Tools: Unix/Linux, InetSoft, Xilinx ISE, Multisim, ModelSim, PSpice, L-edit, Oscilloscope, Auto-CAD

Communication/Organization/Leadership:

Excellent organization and time management skills, Effective leadership and team skills, Strong analytical and problem

solving skills, Ability to adapt to new situations and technology quickly, Excellent technical report writing skill

WORK EXPERIENCE:

Student Assistant Legislative Data Center 11/01-Present
Office Assistant Marin Eye Care 8/08 – 10/13
Sales Associates Macy’s 10/07 – 5/08

AWARDS AND ACCOMPLISHMENTS: SRJC Dean’s Honor List CSUS Dean’s Honor List
Three years of studying in Chemical Engineering Field

VOLUNTEER WORK: Help earthquake victims of Bam 2003

WORK STATUS: U.S Citizen with permanent unrestricted right to work in the U.S

E. Vasiliy Warkentin

Vasiliy Warkentin

Education

California State University, Sacramento

Expected Graduation December 2014| Bachelor of Science, Computer Engineering

Blagovest Institute, Sacramento, California

August 2013| Bachelor of Church Ministry

Experience

Chief Executive Officer May 2013 – Present

Russian Baptist Church | 1000 Sacramento Ave. West Sacramento, CA 95605

• Director, decision maker, leader, manager and executor of the Church Board decisions

Network Administrator/Video Department manager January 2006 – May 2013

Russian Baptist Church | 1000 Sacramento Ave. West Sacramento, CA 95605

• Maintain Facility Network and Technology

• Manage the weekly video needs of the church

• Manage the 22 people video team

Skills

• Effective leadership and team skills

• Microprocessor and Computer Architecture

• Signals and Systems

• C Programing language

APPENDIX-B HUB MAIN CODE
#include <FileIO.h>
#include <EEPROM.h>
#include <Wire.h>
#include <Process.h>

const int SPKR_PIN = 13;
const int LED_PIN = 12;

//-------External EEPROM
const byte EEPROM_ID = 0x50; // I2C address for 24LC128 EEPROM
int TIMEUP_ADDR = 0;
int CLOCK_ADDR = 1;
int BUS_ADDR = 2;
int SERIAL_ADDR = 3;
int ID_ADDR = 4;
int DATA_ADDR = 5;

int kill = 0;
int rewritingInProress = 0;
unsigned long timeup;

//------I2C BUS
int devices = 127;
int id[127] = {0};

void setup() {
 initialize();
}

void loop() {
 int Internet = wifiCheck();
 String dataString;

 timeup = millis();
 timeup = timeup /1000;
 //delay(6000);

 dataString += getTimeStamp();
 dataString += " = ";
 byte dt = dataString.toInt();
 // int dt = getTimeStamp().toInt();
 // delay(1000);
 //Console.println();
 readFromAll(dataString);
}

int wifiCheck(){

 Process wifiCheck; // initialize a new process

 wifiCheck.runShellCommand("/usr/bin/pretty-wifi-info.lua"); // command you want to run

 // while there's any characters coming back from the
 while (wifiCheck.running());
 int result = wifiCheck.parseInt(); // look for an integer
 int result2 = wifiCheck.parseInt(); // look for an integer
 int result3 = wifiCheck.parseInt(); // look for an integer
 int result4 = wifiCheck.parseInt(); // look for an integer
 return result4;
}

void initialize(){
 // Initialize the Bridge and the Serial
 Bridge.begin();
 Console.begin();
 FileSystem.begin();
 while (!Console); // wait for serial port to connect
 Wire.begin();
 Console.println("iSmart Monitor\n");
}

void readFromAll(String dataString){
 int c = 1;
 while(c < devices){
 Wire.requestFrom(c, 5);
 if(Wire.available()){
 readFromOne(c, dataString);
 }
 if(c==79)c++; //EEPROM on bus 80
 c++;
 }
}

void readFromOne(int c, String dataString){
 float data = 0;
 byte ID,
 SERIAL_HB,
 SERIAL_LB,
 alarm_bit,
 data_hb,
 data_lb;
 int serial;

 ID = Wire.read();
 SERIAL_HB = Wire.read();
 SERIAL_LB = Wire.read();

 data_hb = Wire.read();
 data_lb = Wire.read();

 alarm_bit = SERIAL_HB / 128;
 serial = (SERIAL_HB * 256 + SERIAL_LB) - alarm_bit * 32768;

 if(ID == 2){
 data = (float)((data_hb * 256 + data_lb) / 100.0);
 }
 else if(ID == 1){
 data = (float)((data_hb * 256 + data_lb) / 100.0);
 }
 else{
 data = data_hb * 256 + data_lb;
 }

 writeData(c, ID, alarm_bit, serial, data, dataString, timeup);
}

void writeData(int c, byte ID, byte alarm_bit, int serial, float data, String dataString, long timeup){
 byte dt = dataString.toInt();
 writeToSD(c, ID, alarm_bit,serial,data,dataString, timeup);
 // writeToFTP();
 if(wifiCheck()){ //there is internet connection
 writeToFTP();
 alarm_led();
 }
 // & LED */
 writeToSerial(c, ID, alarm_bit,serial,data,dataString, timeup);
 // writeToEEPROM(c, ID,serial,data,dt, timeup);
 //Console.println();
}

int writeToSD(int c, byte ID, byte alarm_bit, int serial, float data, String dataString, long timeup){

 Process p;
 p.runShellCommand("df | grep dev/sda1");
 while (p.running());
 int result = p.parseInt(); // look for an integer
 int SDsize = p.parseInt(); // look for an integer
 int SDused = p.parseInt(); // look for an integer
 int SDavailable = p.parseInt(); // look for an integer
 int SDpersent = p.parseInt();

 if (result == 1){
 String sFile = "/mnt/sda1/" + String(ID) + String(serial) + ".txt";

 char file[100];
 sFile.toCharArray(file, 100);

 File dataFile = FileSystem.open(file, FILE_APPEND);
 ///////////////// clean up to represent right formating.
 if (DATA_ADDR > 5){ //If SD is reconnected, upload from EEPROM to SD
 Console.println("Uploading Data from EEPROM to SD");
 for (int i=0; i<DATA_ADDR; i++)
 {
 int remainder = i%6;
 if(remainder==0){
 dataFile.print("Time Up: ");
 dataFile.print(I2CEEPROM_Read(i));
 dataFile.println(" Seconds");
 }
 else if (remainder == 1){
 dataFile.print("Real Time: ");
 dataFile.println(I2CEEPROM_Read(i));
 }
 else if(remainder == 2){
 dataFile.print("Sensor Bus: ");
 dataFile.println(I2CEEPROM_Read(i));
 }
 else if (remainder == 4){
 dataFile.print("Sensor ID: ");
 ID = I2CEEPROM_Read(i);
 dataFile.print(ID);
 if (ID == 1){
 dataFile.println(" Temperature Sensor");
 }
 else if (ID == 2){
 dataFile.println(" Pulse Sensor");
 }
 }
 else if (remainder == 3){
 dataFile.print("Serial number: ");
 dataFile.println(I2CEEPROM_Read(i));
 }
 else if (remainder == 5) {
 dataFile.print("Sensor Data: ");
 dataFile.print(I2CEEPROM_Read(i));
 if (ID == 1){
 dataFile.println("F");
 }
 else if (ID == 2){
 dataFile.println(" bpm");
 }
 dataFile.println();

 }

 I2CEEPROM_Write(i,0);
 }
 dataFile.println();
 dataFile.println();
 dataFile.println();
 dataFile.close();
 TIMEUP_ADDR = 0;
 CLOCK_ADDR = 1;
 BUS_ADDR = 2;
 SERIAL_ADDR = 3;
 ID_ADDR = 4;
 DATA_ADDR = 5;
 }
 //// SD Capacity options//////
 if(SDpersent == 80) { //gets to 80%, alaram will sound
 Serial.println("SD is 80% full");
 dataFile.println("ALARM!");
 alarm_tone();
 }
 if(SDpersent == 95) { //gets to 95%, recodard alarming data:time, id, alarm, data
 Console.println("SD is almost full");
 dataFile.println(timeup);
 dataFile.println(dataString); //time
 dataFile.print("Sensor ID: ");
 dataFile.println(ID);
 if(alarm_bit){
 // alarm_tone();
 dataFile.println("ALARM!!!!");
 }
 dataFile.print("Sensor Data: ");
 dataFile.print(data);
 if (ID == 1){
 dataFile.println(" F");
 }
 else if (ID == 2){
 dataFile.println(" bpm");
 }
 dataFile.println();
 dataFile.close();
 }
 if(SDpersent == 100) { //gets to 100%, overwrite oldest data
 Console.println("SD is full");
 if (rewritingInProress == 0){
 dataFile.rewindDirectory(); //will bring you back to the first file in the directory on an SD card
 dataFile.seek(0); //seek to position 0 in dataFile
 rewritingInProress = 1;

 }
 }
 ////////////////////////////////
 if(dataFile){
 Console.println("Writing to SD card");
 dataFile.print("Time Up: ");
 dataFile.print(timeup);
 dataFile.println(" Seconds");
 dataFile.print("Real Time: ");
 dataFile.println(dataString); //real-time
 dataFile.print("Sensor Bus: ");
 dataFile.println(c);
 dataFile.print("Sensor ID: ");
 dataFile.print(ID);
 if (ID == 1){
 dataFile.println(" Temperature Sensor");
 }
 else if (ID == 2){
 dataFile.println(" Pulse Sensor");
 }
 dataFile.print("Serial number: ");
 dataFile.println(serial);
 if(alarm_bit){
 //alarm_tone();
 dataFile.print("ALARM!!!!");
 }
 dataFile.print("Sensor Data: ");
 dataFile.print(data);
 if (ID == 1){
 dataFile.println("F");
 }
 else if (ID == 2){
 dataFile.println(" bpm");
 }
 dataFile.close();
 dataFile.println();
 return 0;
 }
 }

 else{
 Console.println("Error opening SD....");
 byte dt = dataString.toInt();
 writeToEEPROM(c, ID,serial,data,dt,timeup); //If SD is disconnected, write to EEPROM
 return 1;
 }
 }

void writeToFTP(){
 Process ftp;
 if (kill == 0){
 Console.println("Transfering files to FTP");
 ftp.runShellCommandAsynchronously("lftp -u ismart,Team6Monitor -e 'put /mnt/sda1/12.txt'
ftp://66.197.182.125");
 ftp.runShellCommandAsynchronously("lftp -u ismart,Team6Monitor -e 'put /mnt/sda1/11.txt'
ftp://66.197.182.125");
 }
 kill++;
 if(kill == 10){
 kill = 0;
 killFTP();
 }
 Console.println();
}

void killFTP(){
 Process kill;
 kill.runShellCommandAsynchronously("killall lftp");
 kill.runShellCommandAsynchronously("killall lftp");
 kill.runShellCommandAsynchronously("killall lftp");
 kill.runShellCommandAsynchronously("killall lftp");
}

void writeToSerial(int c, byte ID, byte alarm_bit, int serial, float data, String dataString, long timeup){
 Console.print("Time Up: ");
 Console.print(timeup);
 Console.println(" Seconds");
 Console.print("Real Time: ");
 Console.println(dataString);
 Console.print("Sensor Bus: ");
 Console.println(c);
 Console.print("Sensor ID: ");
 Console.print(ID);
 if (ID == 1){
 Console.println(" Temperature Sensor");
 }
 else if (ID == 2){
 Console.println(" Pulse Sensor");
 }
 Console.print("Serial number: ");
 Console.println(serial);
 if(alarm_bit){
 Console.println("ALARM!!!!");
 alarm_tone();
 }
 Console.print("Sensor Data: ");

 Console.print(data);
 if (ID == 1){
 Console.println("F");
 }
 else if (ID == 2){
 Console.println(" bpm");
 }
 Console.println();
}

void writeToEEPROM(int c, byte ID, int serial, float data, byte dt, long timeup){
 //Writing to EEPROM
 int i;
 Console.println("Writing to EEPROM");
 I2CEEPROM_Write(TIMEUP_ADDR, timeup);
 I2CEEPROM_Write(CLOCK_ADDR, dt);
 I2CEEPROM_Write(BUS_ADDR, c);
 I2CEEPROM_Write(ID_ADDR, ID);
 I2CEEPROM_Write(SERIAL_ADDR, serial);
 I2CEEPROM_Write(DATA_ADDR, data);
 TIMEUP_ADDR+=6;
 CLOCK_ADDR+=6;
 BUS_ADDR+=6;
 ID_ADDR+=6;
 SERIAL_ADDR+=6;
 DATA_ADDR+=6;

 ///EEPROM capacity options/////
 int ESIZE = (i/1024000000);
 if (ESIZE == 0.90) { //when it's 90% full
 alarm_led(); //LED
 Console.println("ALARM: EEPROM is almost full & NO Internet Connection!");
 }
 else if (ESIZE == 1) { //when it's 100% full
 alarm_tone();
 Console.println("ALARM: EEPROM is full & NO Internet Connection!"); //ALARM
 return; //it will stop recording
 }
}

void I2CEEPROM_Write(unsigned int address, byte data) {
 Wire.beginTransmission(EEPROM_ID);
 Wire.write((int)highByte(address));
 Wire.write((int)lowByte(address));
 Wire.write(data);
 Wire.endTransmission();
 delay(5); // wait for the I2C EEPROM to complete the write cycle
}

byte I2CEEPROM_Read(unsigned int address)
{
 byte data;
 Wire.beginTransmission(EEPROM_ID);
 Wire.write((int)highByte(address));
 Wire.write((int)lowByte(address));
 Wire.endTransmission();
 Wire.requestFrom(EEPROM_ID,(byte)1);
 while(Wire.available() == 0) // wait for data
 ;
 data = Wire.read();
 return data;
}

String getTimeStamp() {
 String result;
 Process time;
 time.begin("date");
 time.addParameter("+%D-%T"); // parameters: D for the complete date mm/dd/yy
 // T for the time hh:mm:ss
 time.run(); // run the command
 // read the output of the command
 while(time.available()>0) {
 char c = time.read();
 if(c != '\n')
 result += c;
 }
 return result;
}

void alarm_tone(){
 for(int i = 500; i > 0; i-=50)
 {
 tone(SPKR_PIN, i);
 delay(50);
 noTone(SPKR_PIN);
 }
 for(int i = 0; i < 500; i+=50)
 {
 tone(SPKR_PIN, i);
 delay(50);
 noTone(SPKR_PIN);
 }
}

void alarm_led(){
 for(int i = 500; i > 0; i-=50)

 {
 tone(LED_PIN, i);
 delay(50);
 noTone(LED_PIN);
 }
 for(int i = 0; i < 500; i+=50)
 {
 tone(LED_PIN, i);
 delay(50);
 noTone(LED_PIN);
 }
}

